A. 电子管单管牛入牛出耳放电路图
如图所示:
B. 酷派手机怎么样
我用酷派8811手机,是每月消费120元,分2年24期换购的,总价要2400多元。2011年十月购入。现在使用一年,把我的使用心得写出来,供大家参考。
酷派手机,一个字:烂,两个字:极烂,三个字:超级烂。
原因如下:
1、手机短信无法删除,尤其是彩信,我订手机报,一天两条,几乎无法手动删除,一删就死机,如果手机短信积攒的多了,那就基本宣布报废。酷派手机接收短信设计的存储方式,就好像是堆栈式存储,物理集成电路板设计就有问题,设计之初就存在缺陷,开发部门也没有进行验证和测试,就拿出来,这样的东西,能经得起检验才是奇迹。
2、摄像头抖动,号称800万像素的摄像头,同样存在存储问题,画质不清楚不说,基本是人家的300万效果,重要的是,拍摄完的照片,因为存储问题,会产生重影,画质虚幻、和长期曝光,这个问题多次出现,基本要照完像拿很久不动,才能凑合看,原因同样是数据存储设计缺陷。
3、屏幕坏,用了一年,屏幕中间坏了一条,正好在需要“确定”的位置,屏幕保修一年,我使用保护的很好,基本也不怎么用,因为单位有电脑,也不是很手机控的人,一年手机屏幕就会坏,说明酷派采购的手机屏就不是好工厂出来的。代工企业肯定很一般。手机屏本来是很成熟的产品,在没有外部损伤的情况下,出现这样的问题,只能解释代工厂质量有问题,是廉价货。
4、手机太厚重,电池质量差。本来当时觉得酷派这款有点厚,可能是电磁容量大,可以多待机,结果后来才发现,这手机制作有缺陷,所以才这么厚,厚表示集成电路设计和制作不好,电池待机时间短,是因为手机功耗问题没解决,也是手机设计的缺陷,才导致的。并不是手机电磁容量大,同期我给老婆换购的1000元的中兴手机,从待机时间到,到灵敏度,操作性能,手机薄厚,都强过酷派几倍不止,实在是后悔买酷派,恨死它了。
5、手机操作反应迟钝,慢死蜗牛。这个就不说原因了。
手机刚用1年一个月,基本半天就没电,短信无法删除,屏幕中间坏,照相功能基本丧失...
我真不知道这么烂的手机,怎么弄过质量检验关,可怜的中国人,被这些残次品蒙骗,还在中国有这么大的消费份额,真是后悔支持国货,这残次品,怎么和国际品牌竞争。我实在很无奈
上述仅是个人使用的心得,就是想告诉大家,买手机,要慎重。
C. 我想学电子电路基础.但看不懂.
好的书是最关健的,机电专业,大学的课程非常好。首先你要有一定的电工基础,,然后再自版学权大学的课程。理论是很重要的,要努力学习电方面的理论。电工和电子有共性。所以先学电工基础。要从简单的二极管,三极管开始学起,然后再学晶体管放大电路,整流电路,最好是先自学下高等数学,里面的积分,微积分的理论是很重要的。最难的是三极管的微观理论,搞通了,就好办了。很难的,如果你天份不好的话,就更难了。
要长期的苦学,还要在实际的工作中苦干才学的会的。
D. 实用机床电路图集的目录
前 言
第一章 机床电路基本知识
第一节 常用电工图形、文字符号、术语
一、常用电工图形符号
二、常用电工文字符号
三、术语
第二节 接触器继电器电路典型环节
一、电动机的点动控制电路
二、电动机单向起动的控制电路
三、电动机的可逆起动控制电路
四、用辅助触点作联锁保护的电动机可逆起动控制电路
五、用按钮作联锁保护的电动机可逆起动控制电路
六、复合联锁保护的电动机可逆起动控制电路
七、可逆点动、起动的混合电动机控制电路
八、可逆起动以行程开关作自动停止的电动机控制电路
九、自动往返电动机控制电路
十、串电阻(电抗器)减压起动控制电路
十一、自耦变压器(补偿器)电动机减压起动控制电路
十二、星—三角(Y—△)电动机起动控制电路
十三、延边三角形电动机减压起动控制电路
十四、绕线转子电动机转子串电阻起动控制电路
十五、绕线转子电动机转子串频敏变阻器起动的控制电路
十六、双速电动机的控制电路
十七、三速异步电动机起动和自动加速控制电路
十八、单向起动反接制动控制电路
十九、双向起动反接制动控制电路
二十、单向起动半波整流能耗制动控制电路
二十一、双向起动半波整流能耗制动控制电路
二十二、单向起动全波整流能耗制动控制电路
二十三、再生制动电路
二十四、电容制动电路
第三节 电子典型电路
一、整流电路
二、晶体管稳压电源
三、晶体管典型电路
第四节 逻辑电路的基本知识
一、数制及数字编码
二、计算机语言
三、硬件和软件
四、逻辑电路的构成
第二章 车床的控制电路图
图2-1 C620型车床的电气原理和接线图
图2-2 C616型车床电气原理和接线图
图2-3 能使用但不合理的C620型车床电气原理图
图2-4 设计错误的C620型车床电气原理图
图2-5 C630型车床电气原理图
图2-6 CA6140型车床电气原理图
图2-7 C650型车床电气原理图
图2-8 带快速的C650型车床电气原理图
图2-9 C650型车床电气接线图
图2-10 电机转子旋风车床(C630型车床改装)电气原理图(主回路)
图2-11 电机转子旋风车床(C630型车床改装)电气原理图(控制回路)
图2-12 1K62型(原苏联)普通车床电气原理图
图2-13 CW6140型车床电气原理和接线图
图2-14 CW6163型普通车床电气原理图
图2-15 CQC6140型普通车床电气原理图
图2-16 165型(原苏联)车床电气原理图
图2-17 C618K—1型普通车床电气原理图
图2-18 C618K—1型普通车床电气配线主电路
图2-19 C618K—1型普通车床电气配线控制电路
图2-20 C618K—1型普通车床配电板外电气接线线路
图2-21 C618K—1型普通车床电气接线图
图2-22 C640型普通车床(改进)电气原理图
图2-23 CW61100ECW61125E型普通车床电气原理图
图2-24 L—1630L—1640型精密高速车床电气原理图
图2-25 L—1630L—1640型精密高速车床电气接线图
图2-26 C0330型仪表六角车床电气原理图
图2-27 C336—1型回轮式六角车床电气原理图
图2-28 C1325C1336型单轴六角自动车床电气原理图
图2-29 C1312C1318型单轴六角自动车床电气原理图
图2-30 CE7120型半自动仿形车床电气原理图(1)(2)
图2-31 CE7120型半自动仿形车床电气原理图(3)
图2-32 CE7120型半自动仿形车床电气原理图(4)
图2-33 C2132.6D、C2150.4D、C2163.6、C2150.6型卧式六角自动车床电气原理图(1)
图2-34 C2132.6D、C2150.4D、C2163.6、C2150.6型卧式六角自动车床电气原理图(2)
图2-35 CB3463型组合式半自动转塔车床电气原理图(1)
图2-36 CB3463型组合式半自动转塔车床电气原理图(2)
图2-37 CB3463型组合式半自动转塔车床电气原理图(3)
图2-38 CB3463型组合式半自动转塔车床电气原理图(4)
图2-39 CB3450型组合式半自动转塔车床电气原理图(1)
图2-40 CB3450型组合式半自动转塔车床电气原理图(2)
图2-41 CB3450型组合式半自动转塔车床电气原理图(3)
图2-42 C1160重型车床电气控制电路原理图
图2-43 C516A型单柱立式车床电气原理图(1)
图2-44 C516A型单柱立式车床电气原理图(2)
图2-45 改进后的伺服电路
图2-46 JS11系列时间继电器的接线图
图2-47 C523型双柱立式车床主电路
图2-48 C523型双柱立式车床控制电路(1)
图2-49 C523型双柱立式车床控制电路(2)
图2-50 C523型双柱立式车床控制电路(3)
图2-51 C534J1型立式车床主电路
图2-52 C534J1型立式车床控制电路(1)
图2-53 C534J1型立式车床控制电路(2)
图2-54 C534J1型立式车床控制电路(3)
图2-55 C534J1型立式车床控制电路(4)
图2-56 C534J1型立式车床的电阻测温计电路图
图2-57 电磁离合器线圈的基本控制电路
第三章 刨、插、拉床的控制电路图
图3-1 B516、B5020、B5032型插床电气原理图
图3-2 B540型插床电气原理图
图3-3 B635—1型牛头刨床电气原理图
图3-4 B690—1型牛头刨床电气原理图
图3-5 B7430(原苏联)型插床电气原理图
图3-6 B7430(原苏联)型插床电气接线图
图3-7 L710型立式拉床电气原理图
图3-8 A系列龙门刨床电气设备示意图
图3-9 B201216A型龙门刨床工作台前进后退速度变化图
图3-10 工作台的行程开关的零位
图3-11 电压负反馈环节电路图
图3-12 加速度调节器电路
图3-13 前进和后退励磁控制电路
图3-14 电流正反馈环节电路
图3-15 桥形稳定环节电路
图3-16 电流截止负反馈环节电路
图3-17 前进减速时的励磁控制电路
图3-18 步进、步退的给定励磁部分电路
图3-19 停车制动和自消磁电路
图3-20 欠补偿能耗制动环节
图3-21 电流截止环节硒整流片击穿后的电路
图3-22 B2016A型龙门刨床电气原理图——主电路
图3-23 B2016A型龙门刨床电气原理图——电机放大机控制系统
图3-24 B2016A型龙门刨床电气原理图——控制电路(1)
图3-25 B2016A型龙门刨床电气原理图——控制电路(2)
图3-26 B2012A型龙门刨床电气原理图(1)
图3-27 B2012A型龙门刨床电气原理图(2)
图3-28 B2012A型龙门刨床电气原理图(3)
图3-29 B2012A型龙门刨床电气原理图(4)
图3-30 B220型龙门刨床电气原理图(1)
图3-31 B220型龙门刨床电气原理图(2)
图3-32 B220型龙门刨床电气原理图(3)
图3-33 B220型龙门刨床电气原理图(4)
图3-34 B220型龙门刨床电气原理图(5)
第四章 磨床的控制电路图
图4-1 M125K型外圆磨床电气原理图
图4-2 M131型外圆磨床电气原理图
图4-3 M135型外圆磨床电气原理图
图4-4 M1432A型万能外圆磨床电气原理图
图4-5 M250型内圆磨床电气原理图
图4-6 KU250/750型万能磨床电气原理图
图4-7 Y7131型齿轮磨床电气原理图
图4-8 M5080型导轨磨床电气原理图(1)
图4-9 M5080型导轨磨床电气原理图(2)
图4-10 M7120型平面磨床电气原理图(1)
图4-11 M7120型平面磨床电气原理图(2)
图4-12 M7130型卧轴矩台平面磨床电气原理图
图4-13 M131W型万能外圆磨床电气原理图
图4-14 M7120A型平面磨床电气原理图
图4-15 M7120A型平面磨床电气接线图
图4-16 M7475型立轴圆台平面磨床电气主电路
图4-17 M7475型立轴圆台平面磨床的控制电路
图4-18 M7475型立轴圆台平面磨床的退磁控制电路
图4-19 M7475型立轴圆台平面磨床的磁力吸盘退磁电路
图4-20 M7475型立轴圆台平面磨床磁力吸盘退磁电路(1)
图4-21 M7475型立轴圆台平面磨床磁力吸盘退磁电路(2)
图4-22 M7475型立轴圆台平面磨床磁力吸盘退磁电路(3)
图4-23 M7475型立轴圆台平面磨床磁力吸盘退磁电路(4)
图4-24 M7475型立轴圆台平面磨床磁力吸盘退磁电路(5)
图4-25 M7475型立轴圆台平面磨床磁力吸盘退磁电路(6)
图4-26 MM7120型平面磨床交流拖动电气线路
图4-27 MM7120型平面磨床横向进给电路
图4-28 MM7120型平面磨床无触点行程开关LXU原理图
图4-29 MM7120型平面磨床BL1—Y1断开延时元件原理图
图4-30 MM7120型平面磨床电磁吸盘的退磁电路
图4-31 371M1型平面磨床电气原理图
图4-32 M7120A型提高精度卧轴矩台平面磨床电气原理图
图4-33 励磁和给定信号电路
图4-34 控制电路
图4-35 高速起动保护环节
图4-36 限幅环节
图4-37 校正环节
图4-38 MGB1420型磨床晶闸管无级调速系统原理图
图4-39 M7130型卧轴矩台平面磨床电气原理图
图4-40 M1332CM1332CX15型外圆磨床电气原理图
图4-41 M1332CM1332CX15型外圆磨床电气接线图
图4-42 立磨(C512立车改装)电气原理图
图4-43 立磨(C512立车改装)电气接线图
第五章 钻、镗床的控制电路图
图5-1 Z35型摇臂钻床电气原理图
图5-2 Z3040型摇臂钻床电气原理图
图5-3 Z5163型立式钻床电气原理图
图5-4 Z3040型摇臂钻床电气原理图(改进)
图5-5 Z32A、Z32K、Z3025J型摇臂钻床电气原理图
图5-6 Z37型摇臂钻床电气原理图
图5-7 Z3025型摇臂钻床电气原理图
图5-8 Z3063、ZQ3080、Z3080型摇臂钻床电气原理图
图5-9 ZW3225型车式万向摇臂钻床电气原理图
图5-10 ZH3140型摇臂钻床电气原理图(1)
图5-11 ZH3140型摇臂钻床电气原理图(2)
图5-12 T68型卧式镗床电气原理图(1)
图5-13 T68型卧式镗床电气原理图(2)
图5-14 T68型卧式镗床电气原理图(3)
图5-15 T68型卧式镗床下层配电板配线图
图5-16 T68型卧式镗床上层配电板配线图
图5-17 T4163A型单柱坐标镗床电气原理图(1)
图5-18 T4163A型单柱坐标镗床电气原理图(2)
第六章 铣床的控制电路图
图6-1 X62W型万能铣床电气原理图
图6-2 X52K型立式升降台铣床电气原理图
图6-3 X63W型万能升降台铣床电气原理图(1)(主轴电动机的控制)
图6-4 X63W型万能升降台铣床电气原理图(2)(升降台向上与工作台向右时的回路)
图6-5 X63W型万能升降台铣床电气原理图(3)(工作台向前、升降台向下时的回路)
图6-6 X63W型万能升降台铣床电气原理图(4)(工作台向右时的回路)
图6-7 X63W型万能升降台铣床电气原理图(5)(工作台向左时的回路)
图6-8 X63W型万能升降台铣床电气原理图(6)(进给变速冲动时的回路)
图6-9 X63W型万能升降台铣床电气原理图(7)(快速行程回路)
图6-10 X63W型万能升降台铣床电气原理图(8)(单向自动控制的牵引电磁铁电气回路)
图6-11 X63W型万能升降台铣床电气原理图(9)(半自动循环电路)
图6-12 X63W型万能升降台铣床电气原理图(10)(圆形工作台控制电路)
图6-13 X8120W型万能工具铣电气原理图
图6-14 龙门铣床外观结构图
图6-15 主轴控制电路
图6-16 横梁控制图
图6-17 控制电路图
图6-18 进给行程极限控制图
图6-19 交流进给控制图
图6-20 稳压电源原理图
图6-21 调节器原理图
图6-22 放大器原理图
图6-23 直流控制系统故障检查流程图
图6-24 触发器原理图
图6-25 变速起动控制电路图
图6-26 变速中挡位控制
图6-27 变速中各工作阀控制图
第七章 电加工机床控制电路图
图7-1 静电储能式晶体管脉冲电路
图7-2 利用3个不同直流电源的同步电源电路
图7-3 QC晶体管脉冲电源方框图
图7-4 从属型晶体管脉冲电源原理图
图7-5 高低压复合晶体管脉冲电源示意图和波形图
图7-6 等脉冲晶体管脉冲电源原理图
图7-7 直流偏磁系统
图7-8 单结晶体管触发电路
图7-9 晶体管触发电路
图7-10 用变压器升压的高低压复合回路的高压附加电路
图7-11 另一种高压附加电路
图7-12 电磁储能式电路
图7-13 和间隙串联的晶体管电路
图7-14 和间隙并联的晶体管电路
图7-15 多晶闸管脉冲电路
图7-16 晶闸管脉冲电源其他形式(1)
图7-17 晶闸管脉冲电源其他形式(2)
图7-18 晶闸管脉冲电源其他形式(3)
图7-19 电磁储能式回路(1)
图7-20 电磁储能式回路的原理示意图
图7-21 静电储能式电路及波形图
图7-22 电磁储能式回路(2)
图7-23 非储能式电路及波形图
图7-24 非储能式电路及间隙电压、电流波形图
图7-25 大电流晶闸管脉冲电源电路
图7-26 重叠式脉冲电路及波形图
图7-27 晶闸管和RLC联合应用的电路
图7-28 多回路加工脉冲电源电路示意图
图7-29 晶闸管粗加工线路形式(1)
图7-30 晶闸管粗加工线路形式(2)
图7-31 晶闸管粗加工线路形式(3)
图7-32 晶闸管精加工线路形式(1)
图7-33 晶闸管精加工线路形式(2)
图7-34 晶闸管精加工线路形式(3)
图7-35 晶闸管精加工线路形式(4)
图7-36 晶闸管精加工线路形式(5)
图7-37 等脉冲式晶闸管脉冲电源的主电路
图7-38 小晶闸管触发电路
图7-39 晶闸管调压电路
图7-40 变压器复合式晶闸管脉冲电源的主电路
图7-41 双电源复合式晶闸管脉冲电源的主电路
图7-42 典型的晶体管脉冲电源方框图
图7-43 晶体管自激多谐振荡器
图7-44 改进后的振荡器电路
图7-45 防停振电路
图7-46 较完善的防停振电路
图7-47 缓冲级射极输出原理图
图7-48 常见的典型锯齿波发生器电路
图7-49 环形振荡式脉冲发生器电路图
图7-50 置零功能系统示意框图
图7-51 集成电路数字式脉冲发生器电路框图
图7-52 单稳态电路图
图7-53 简单可靠的电路
图7-54 反相放大器
图7-55 典型的脉冲反相放大器电路
图7-56 功率放大级电路原理图
图7-57 JF—40A晶体管脉冲电源前置放大器原理图
图7-58 典型的互补射极输出放大器原理图
图7-59 几种保护电路功耗曲线和波形图
图7-60 采用MOS管的功率放大级电路
图7-61 高压功率级原理图
图7-62 微细加工电路图
图7-63 等脉冲电路控制系统线路图
图7-64 伺服板的工作原理框图
图7-65 SG—300A型晶体管脉冲电源电柜布置图
图7-66 D6125G型电火花穿孔机床脉冲电源电路
图7-67 SG—30C型电火花加工机床面板图
图7-68 SG—50B型电火花加工机床电器件排布图(1)
图7-69 SG—50B型电火花加工机床电器件排布图(2)
图7-70 SG—100B型电火花加工机床伺服电路框图
图7-71 SG型电火花加工机床脉冲电源框图
图7-72 SG—30C型脉冲电源电路
图7-73 SG—30型计算机原理图(见插页)
图7-74 D6140A机床晶体管脉冲电源电路(见插页)
图7-75 四回路晶体管脉冲电源面板图
图7-76 四回路晶体管脉冲电源低压主电路
图7-77 四回路晶体管脉冲电源电路
图7-78 D703型小孔机床操作面板图
图7-79 D703型小孔机床主轴伺服印刷板图
图7-80 D703型电火花高速小孔机床电气原理图(见插页)
图7-81 SG—100B型步进电机伺服控制原理图(见插页)
图7-82 SG—30C型键盘接口板原理图(见插页)
图7-83 直流电机拖动原理图(见插页)
图7-84 SG—100B型计算机板图(见插页)
图7-85 引燃式电火花加工脉冲电源框图
图7-86 放电间隙状态检测环节工作原理框图
图7-87 步进电机伺服进给控制主程序框图
第八章 数控机床与PC机控制电路图
图8-1 数控装置的基本组成框图
图8-2 点位控制系统加工
图8-3 直线控制系统加工
图8-4 连续控制系统加工
图8-5 开环控制系统
图8-6 闭环控制系统
图8-7 半闭环控制系统
图8-8 FANUC公司OM系统框图
图8-9 步进电机工作原理示意图
图8-10 交流伺服电动机的控制方法
图8-11 FANUC交流主轴驱动控制系统原理
图8-12 SIMODRIVE交流主轴驱动系统结构框图
图8-13 直线式感应同步器定尺、滑尺结构
图8-14 感应同步器工作原理
图8-15 鉴幅型感应同步器检测系统方框图
图8-16 鉴相型感应同步器检测系统方框图
图8-17 干涉条纹式光栅工作原理
图8-18 光栅信号的光电转换
图8-19 光栅运动方向的判别
图8-20 光栅信号的四倍频线路
图8-21 数控系统工作流程图
图8-22 译码缓冲存储区
图8-23 数字积分法直线插补
图8-24 数字积分法圆弧插补
图8-25 两坐标联动的数字积分插补器
图8-26 DDA圆弧插补框图
图8-27 逐点比较法直线插补
图8-28 逐点比较法圆弧插补
图8-29 圆弧插补进给方向
图8-30 时间分割法直线插补
图8-31 时间分割法圆弧插补
图8-32 扩展DDA直线插补
图8-33 扩展DDA圆弧插补
图8-34 零件轮廓与刀具中心轨迹
图8-35 刀具半径偏移计算
图8-36 数控机床操作面板
图8-37 符号组合使用例
图8-38 数控机床操作盘原理示意图(1)
图8-39 数控机床操作盘原理示意图(2)
图8-40 KSJ—1型顺序控制器简化逻辑图
图8-41 条件步进型顺序控制器简化原理图
图8-42 左移码步进器
图8-43 D触发器组成的步进器
图8-44 CP脉冲发生电路
图8-45 步进器单稳电路
图8-46 晶体管多“1”检测电路
图8-47 集成电路多“1”检测电路
图8-48 跳步电路
图8-49 输入矩阵
图8-50 输出矩阵及联锁矩阵原理图
图8-51 定时电路
图8-52 显示电路
图8-53 控制电路
图8-54 KSJ—200H型条件步进式顺序控制器原理图
图8-55 继电器与PC控制系统的比较
图8-56 PC的构成框图
图8-57 编程板
图8-58 小功率晶闸管—电动机单闭环调速系统原理图
图8-59 给定电压与转速负反馈环节
图8-60 放大和电压微分负反馈电路
图8-61 电流截止环节
图8-62 触发脉冲电路
图8-63 采用运算放大器的调速系统框图
图8-64 运放应用电路
图8-65 线性集成电路在调速系统中的应用
图8-66 无静差调速系统原理框图
图8-67 比例积分调节器组成的无静差调速系统
图8-68 速度与电流双闭环调速系统框图
图8-69 双闭环调速系统(单相桥式整流电路)
图8-70 双闭环调速系统(晶闸管触发电路)
图8-71 双闭环调速系统(速度调节和电流调节电路)
图8-72 SF13型数显原理方框图
图8-73 SF13型数显电路图(预置工作方式)
图8-74 SF13型数显电路图(稳幅电路及显示计数器)
图8-75 SF13型数显电路图(振荡器及脉冲形成)
图8-76 振荡电路
图8-77 脉冲形成电路及其波形
图8-78 前置放大器
图8-79 高通滤波器
图8-80 主放大器
图8-81 精门槛电路及波形图
图8-82 防闪门和计数脉冲门电路
图8-83 函数变压器构成框图
图8-84 两级函数变压器
图8-85 转换计数器与译码电路
图8-86 运动方向判别电路
图8-87 符号及加减判别电路
图8-88 粗精转换电路
图8-89 表头逻辑电路
图8-90 预整定和校对电路
图8-91 脉宽放大器的主电路
图8-92 单极性输出脉宽调制放大器
图8-93 V5系列调速装置方框图
图8-94 SKC—630型数控车床逻辑图(见插页)
图8-95 MJ—3215型带锯机床数控进尺装置逻辑图(1)(见插页)
图8-96 MJ—3215型带锯机床数控进尺装置逻辑图(2)(见插页)
图8-97 KD—350型数控水压机逻辑图(见插页)
图8-98 ZSK25型数控钻床逻辑图(见插页)
图8-99 SKY—80型数字程序控制冲模回转压力机逻辑图(见插页)
图8-100 DT16—28型粗镗电气原理图(1)
图8-101 DT16—28型粗镗电气原理图(2)
图8-102 DT16—28型粗镗电气原理图(3)(PC输入、输出点分配)
图8-103 Y132型端盖油压机(轴承)电气原理图(1)
图8-104 Y132型端盖油压机(轴承)电气原理图(2)
图8-105 梯形图(1)
图8-106 梯形图(2)
图8-107 梯形图(3)
图8-108 梯形图(4)
图8-109 梯形图(5)
图8-110 梯形图(6)
图8-111 梯形图(7)
图8-112 梯形图(8)
第九章 其他机床电路图
图9-1 JB23—80型80T开式双柱可倾压力机(80T冲床)电气原理和接线图
图9-2 80T冲床电气原理图和接线图
图9-3 G607型圆锯床电气原理图
图9-4 G607型圆锯床电气接线图(1)
图9-5 G607型圆锯床电气接线图(2)
图9-6 G607型圆锯床电气接线图(3)
图9-7 JDW91—10型外定位冲槽机电气原理图(1)
图9-8 JDW91—10型外定位冲槽机电气原理图(2)
图9-9 JDW91—10型外定位冲槽机电气接线图
图9-10 JDW91—10型外定位冲槽机电气箱面板接线图
图9-11 Y38型滚齿机电气原理图
图9-12 Y3150型滚齿机电气原理图
图9-13 手动电气控制装置原理图
图9-14 电工鳞板线电气原理图(1)
图9-15 电工鳞板线电气原理图(2)
图9-16 电工鳞板线电气原理图(3)
图9-17 15/3t桥式起重机电气原理图
图9-18 20/5t桥式起重机电气原理图
图9-19 晶闸管中频电源主电路系统图
图9-20 晶闸管中频电源控制和保护系统图
图9-21 晶闸管中频电源操作系统图(见插页)
图9-22 JSMJ型晶体管脉冲式时间继电器电路
图9-23 JSJ型晶体管时间继电器电路(1)
图9-24 JSJ型晶体管时间继电器电路(2)
图9-25 JSJ型晶体管时间继电器电路(3)
图9-26 JSJ型晶体管时间继电器电路(4)
图9-27 JS13型晶体管时间继电器电路
图9-28 JSB型晶体管时间继电器电路
图9-29 JSJ0型晶体管时间继电器电路
图9-30 JSJ1型晶体管时间继电器电路
图9-31 JSDJ型晶体管断电延时继电器电路
图9-32 JSKJ型晶体管时间继电器电路(直流)
图9-33 JSKJ型晶体管时间继电器电路(交流)
图9-34 JSU型晶体管时间继电器电路
图9-35 TJSB1型晶体管时间继电器延时型电路
图9-36 TJSB1型晶体管时间继电器脉冲型电路
图9-37 JS14型晶体管时间继电器电路
图9-38 JS20型系列晶体管时间继电器所用场效应管断电延时电路
图9-39 JS20型系列晶体管时间继电器所用场效应管通电延时电路
图9-40 BJWO—1/□型热继电器电路
图9-41 BJWO—3/□型热继电器电路
图9-42 LJ2系列晶体管接近开关原理电路图
参考文献
E. 如何判别放大电路是否有放大作用
发射结正偏,集电结反偏 是三极管处于放大区的要求
Rb、Rc、Re 都是限流电阻,PN结导通情况下电阻很小,而且硅管PN结压降也就0.7V左右,所以剩余的电压会全部降在PN很小的导通电阻上,导致PN结烧毁
加上限流电阻就是用于分担PN结的压力,降低回路中的电流,保护三极管不被损坏
对于三极管共射级放大电路来说,Rb要有,用于限制BC一路的电流;而Rc和Re都是用于限制CE一路的电流,如果没有其他作用,可选用其中一个。
实际电子技术应用中,当线路中负载为扬声器、记录仪表、继电器或伺服电动机等设备时,就要求它能为负载提供足够大的交流功率,使之能够带动负载。通常把这种电子线路的输出级称为功率放大电路,简称“功放”。功放电路中的晶体管称为功率放大管,简称“功放管”。功放广泛用于各种电子设备、音响设备、通信及自控系统中。
(5)牛体刷电路扩展阅读:
晶体管是实现电流放大的基本元件,但在电子电路中通常是需要进行电压信号放大的,因此,晶体管也被用作放大电压的电子电路的基本元件。
要想将晶体管用于电压放大电路,在信号输入端通过电阻将输入电压转化为电流,并加载到基极,电路的输出阻抗将晶体管的放大电流转化为电路的放大电压,然后在集电极输出。
要放大信号,就要选择适当大小的电阻,只有这样,才能让电子电路按照预想的计划进行放大。
不同的晶体管(即使是一样的型号)电流放大倍数也存在不同,同时,电流放大倍数也根据周围温度的变化而变化,所以这样的电路是不稳定的。
所以,在实际的电路中,经常采用“偏置电路”,这样的电路不受各种参数差异和温度变化的影响。
放大电路本身的特点:
一、有静态和动态两种工作状态,所以有时往往要画出它的直流通路和交流通路才能进行分析;
二、电路往往加有负反馈,这种反馈有时在本级内,有时是从后级反馈到前级,所以在分析这一级时还要能“瞻前顾后”。在弄通每一级的原理之后就可以把整个电路串通起来进行全面综合。
电路的组成及各元件的作用
(1)三极管VNPN管,具有放大功能,是放大电路的核心。
(2)直流电源VCC使三极管工作在放大状态,VCC一般为几伏到几十伏。
(3)基极偏置电阻Rb它使发射结正向偏置,并向基极提供合适的基极电流(。Rb一般为几十千欧至几百千欧。
(4)集电极负载电阻Rc它将集电极电流的变化转换成集-射极之间电压的变化,以实现电压放大。Rc的值一般为几千欧至几十千欧。
(5)耦合电容C1、C2又称隔直电容,起通交流隔直流的作用。C1、C2一般为几微法至几十微法的电解电容器,在联结电路时,应注意电容器的极性,不能接错。