导航:首页 > 电器电路 > tl494升压电路图

tl494升压电路图

发布时间:2023-06-11 01:33:12

⑴ TL494的输出占空比和死区电压有怎样的线性关系

TL494是专用双端脉冲宏漏调制器件,TL494为固定频率的PWM控制电路,它结合了全部方块图所需之功能,在切换式电源供给器里可单端式或双坡道式的输出控制。如图1所示为TL494控制器的内部结构与方块图其内部的线性锯齿波振荡器乃为频率可规划式(frequencyprogrammable),在脚5与脚6连接两个外部元件RT与CT,既可获得所需之频率其频率可由下式计算得知

0

图1TL494控制器的内部结构与方块图片

输出脉波宽度调变之达成可借着在电容器CT端的正锯齿波形与两个控制信号中的任一个做比较而得之。电路中的NOR闸可用来驱动输出三极管Q1与Q2,而且仅当正反器的时钟输入信号是在低准位时,此闸才会在有效状态,此种情况的发生也是仅当锯齿波电压大于控制信号电压的期间里。当控制信号的振幅增加时,此时也会一致引起输出脉波宽度的线性减少。如图2所示的波形图。

图2TL494控制器时序波形图

外部输入端的控制信号可输入至脚4的截止时间控制端,与脚1、2、15、16误差放大器的输入端,其输入端点的抵补电压为120mV,其可限制输出截止时间至最小值,大约为最初锯齿波周期时间的4%。当13脚的输出模控制端接地时,可获得96%最大工作周期,而当13脚接制参考电压时,可获得48%最大工作周期。如果我们在第4脚截止时间控制输入端设定一个固定电压,其范围由0V至3.3V之间,则附加的截止时间一定出现在输出上。

PWM比较器提供一个方法给误差放大器,乃由最大百分比的导通时间来做输出脉波宽度的调整,此乃借着设定截止时间控制输入端降至零电位,而此时再回授输入脚的电压变化可由0.5V至3.5V之间,此二个误差放大器有其模态(common-mode)输入范围由-0.3V至(Vcc-2)V,而且可用来检知电源供给器的输出电压与电流。

误差放大器的输出会处于高主动状态,而且在PWM比较器的非反相输入端与其误差放大器输出乃为或闸(OR)运算结合,依此电路结构,放大器需要最小输出导通时间,此乃抑制回路的控制,通常第一个误差放大器都使用参考电压和稳压输出的电压做比较,其环路增益可依靠回授来控制。而第3脚通常用做频率的补偿,它主要目的是为了整个环路的稳定度,特别注意的是运用回授时必须避免第3脚输入过载电流大于600µA,否则最大脉波宽度将会被不正常的限制,此两种误差放大器,都可利用不管是正相或反相放大都可用来稳压。

第二个误差放大器可用来做过电流检知回路,可使用检知电阻来与参考电压元作比较,这回路的工作电压接近地端,基绝拆而此误差放大器的转换速率(slewrate)在7V之Vcc时为2V/µs。但无论如何在高频运用中。由于脉波宽度比较器和控制逻辑的传播延迟使得他不能用为动态电流限制器。它可运用于恒流限制电路或者外加元件作成电流回叠(currentfeed-back)的限流装置,而动态电搏枣流限制最好能使用截止时间控制输入端的第4脚。

当电容器CT放电时,在截止时间比较器输出端会有正脉波信号输出,此时钟脉波可控制操作正反器,且会抑制输出三极管Q1与Q2,若将输出模控制的第13脚连接至参考电压准位线,此时在推挽式操作下,则两个输出三极管在脉波信号调变下会交替地导通,这时每一个输出的转换频率是振荡器频率的一半。

当以单端方式(single-ended)操作时,最大工作周期须少于50%,此时输出驱动可出三极管Q1或Q2取得,若在单端方式操作下需要较高的输出电流,可以将Q1与Q2三极管以并联方式连接,而且输出模控制的第13脚必须接地,则使得正反器在失效(disable)状态,此时输出的转换频率乃相当于震荡器之频率。

因此TL494约两个输出级可以用单端方式或是推挽式来输出,两个输出关系是不被拘束的,两个集极和射极都有输出端可以利用,在共射极状态下,集极和射极电流在200mA时,集极和射极饱和电压大约在1.1V,而在共集极结构下的电压是15V,在输出过载之下两个输出都有保护作用,一般这两个输出在共射极的转换时间为,所以我们可以知道其转换速度非常地快,操作频率可达300KHZ,在25℃时输出漏电流一般都小于1µA。

TL494组成实际的应用电路原理图纸

TL494组成升压电源电路图

主要参数:

powersupplyvoitage电源电压

lineregulation输入电压调节率

loadregulation负载调整率

outpotripple输出纹波电压

shortcircuitcurrent短路电流

efficiency效率

⑵ 用TL494做boost升压电路,如何让输出不随输入改变

可以设计电压电流双闭环结构。
具体办法:
将输出电压反馈回来,与给定电压进行比较,通过PI调节器进行调节。调节器输出作为电流内环给定,再与电流反馈进行比较,通过PI调节器,输出系统的驱动信号即可。

这样,输出电压即可保持稳定,系统响应速度也很快。

⑶ 前辈们,DC-DC升压稳压电路请教

1)这样理解很正确,电路原理是这样的。
2)完全可以控制,实现调压。
3)这内样的电路适合小电流工作容,而且需要的是压差不是很大的电路中。
4)这种电路是靠L的线圈当VT导通时给L存储能量,VT截止时L释放能量,然后通过CO电容储能输出。
所以如果你需要一个压差这么大的电源建议采用其他方案。

⑷ 求一个12伏电瓶升压到24-36左右的升压电路,tl494有现成的电路吗电流五安这样的

494输出电流最高才200ma,

如上图右边的部分升压电路改造,并联几个外置的mos管,然后把电感换成大电流的,二极管也换成大电流的或者并联几个同型号的二极管,然后把滤波电容容量换成大一点的就可以。

⑸ 基于TL494的DC-DC升压型开关电源

李睿智

学号19021211293

【嵌牛导读】随着科技的高速发展,电子产品与人们的工作、生活的关系日益密切,而电子产品都离不开可靠的电源。开关电源则以功耗小、效率高、体积小、重量轻的优势成为研究的热门。因此,提高对开关电源的研究就显得至关重要了。本文介绍了一种基于TL494的DC-DC升压型开关电源电路,该电路采用TL494电源控制芯片及其外围电路产生PWM波,并通过PWM波的占空比控制开关管的导通时间,实现不同电压的稳定输出。经过初步的计算,合理的选择了电路中的开关管,储能电感,滤波电容和续流二极管的参数。实验结果证明,该升压电路的效率高于80%,具有良好的电压调整率和负载调整率。

【嵌牛鼻子】DC-DC升压型开关电源、PWM波、开关管

【嵌牛提问】电子产品在人类的生活中起着日益重要的作用,而电子产品都离不开可靠的电源,如何设计制作出既安全、效率又高的电源呢?这成为人们越来越关心的话题。

【嵌牛正文】

1 .引言

随着现代电子技术的迅速发展,电子产品对电源的要求也越来越高。电源的发展经历了从线性电源、相控电源再到开关电源的发展历程,而开关电源则以其开关频率高、体积小、效率高、可靠性高等特点占据着主导地位[1]。1955 年美国的罗耶 ( Roger G H)首次提出了自激振荡推挽晶体管直流变换器[2],为开关电源的研究打下了理论基础。20世纪60年代,各种开关电源的拓扑电路已经较为成熟。改革开放以后,我国的开关电源技术也得到了长足的进步,并向着高频化、高效率,模块化等特点发展。

该电路选用TL494电源芯片作为整个电路的控制器,并搭建其外围电路,构成产生PWM波的控制电路。通过调节PWM波的占空比控制开关管的关断导通时间,从而达到升压的目的。最后,通过对开关管,储能电感,滤波电容和续流二极管参数的优化,使电路具有较高的效率,良好的电压调整率和负载调整率。

2 .DC-DC升压型开关电源的基本原理

2.1 DC-DC开关电源的种类

开关电源的种类很多,按输入/输出有无隔离的角度,可以分为隔离式与非隔离式两大类型。隔离型的DC-DC开关电源可分为单端正激式、单端反激式、双端半桥、双端全桥等,非隔离型的又可分为降压式、升压式、极性反转式等[3]。本电路为非隔离型的DC-DC开关电源。

2.2 DC-DC开关电源的主电路

图2.2所示是DC-DC升压型开关电源的主电路,它的主要构成元器件包括开关管T,储能电感L、续流二极管D和滤波电容C[4]。

该电路采用的是并联式的结构,既在主回路中开关管T与输出端负载RL并联。由PWM波控制开关管的关断导通时间,高电平时开关管导通,由于导通压降很小,所以续流二极管D截止,此时Ui通过开关管对电感器L充电,负载RL靠电容C中存储的电能供电。低电平时开关管关断,此时续流二极管D导通,Ui与电感器L产生的感应电势正向叠加后,通过续流二极管D对电容器C充电,并同时对负载RL供电。

由以上分析可见,并联式的开关电源电路可以使输出电压高于输入电压,既可实现DC-DC升压的功能。

2.3 DC-DC 开关电源的调制方式

2.3.1 脉冲频率调制

脉冲频率调制PFM(全称为Pulse Frequency Molation),是指脉冲宽度不变,只通过调节工作频率的方式来改变占空比[5]。这种脉冲调制方式电路复杂,难以实现。

2.3.2 脉冲宽度调制

脉冲宽度调制PWM(全称为Pulse Width Molation),是指脉冲频率不变,只通过改变脉冲宽度的方式来改变占空比[6]。

这种脉冲调制方式常用在开关型的稳压电路中,在不改变电路输出PWM波频率的情况下,通过电压反馈电路,调节输出PWM波的宽度[7]。电压反馈电路的工作原理是:当输入电压增大时,取样电阻输出的采样电压也将增大,并在比较放大器和基准电压进行比较,通过放大器输出的信号去控制PWM产生器,使输出脉冲占空比减小,输出电压保持稳定。反之,当输入电压减小时,PWM产生器输出脉冲占空比增大,输出电压仍可以保持稳定。

3 .电源控制芯片TL494及其外围电路的设计

3.1 集成脉宽调制芯片TL494的介绍

如图3.1所示为TL494芯片的引脚图和内部结构,TL494是一种固定频率脉宽调制集成电路,内部集成了大部分的脉宽调制电路,几乎包含了开关电源控制所需的全部功能,广泛应用于各种开关电源中[8]。其内部置有两个误差放大器,1、2 引脚为误差放大器1的正负输入端,16、15 引脚为误差放大器2的正负输入端。3引脚为相位校正和增益控制端,4引脚为死区电平控制端。其内置有线性锯齿波振荡器,5、6引脚处可外置一个电容和一个电阻两个振荡元件。7引脚为接地,8、9引脚分别为三极管Q1的集电极和发射极,10、11引脚分别为三极管Q2的发射极和集电极,12引脚为电源VCC,13引脚为输出PWM波模式控制端,14引脚为内部5V基准电压输出端。

  3.2 TL494芯片的外围电路

其工作频率可通过外接电阻RT和外接电容CT确定。其计算公式如下:

                                              f=1.1/(RT˙CT)

电阻RT的值选为22kΩ,电容CT的值选为1nF,计算得工作频率为50kHZ,既输出PWM波的频率50kHZ。

13引脚为输出PWM波模式控制端,当该引脚为高电平时,两个三极管推挽输出,最大占空比只有48%。为了提高输出能力,将13引脚接地,这使得触发器不起作用,两个三极管输出相同,最大占空比可达到96%。为了提高驱动能力,将两个三级管并联输出,8、11引脚接电源,9、10引脚并联后作为PWM波输出端。

1引脚为反馈信号输入端,为了保持输出电压的稳定性,将该引脚接到电路的输出端,同时将2引脚接入参考电压,参考电压的值由14引脚的5V基准电压经过电阻R3,RP2和R4组成的分压电路提供,一般调节可调电阻RP2的值,使参考电压的值在2.2V-2.3V之间。2、3引脚之间的C2、R5和R6构成的RC网络,可调节误差放大器1的增益和改善开关电源的动态性能,16引脚用作过流保护的输入端,可直接将地反馈给该引脚,使过流保护的作用更佳。

4 .开关电源主要元器件参数的选择

4.1 开关管T的参数选择

    开关管T在电路中承受的最大电压是1.1×1.2U0(U0为输出电压),在实际工程中选择开关管时,应保证有足够的余量,通常选择2~3倍的1.1×1.2U0。开关管T的最大工作电流,通常选择2~3倍的Ii(Ii为输入电压)[9]。在综合考虑开关管的最高开关频率,导通电阻和驱动电路等关键指标的情况下,本电路选择TP75N75,该开关管的最大VDS=75V,最大ID=75A,导通电阻仅8mΩ,其余量完全能够满足实际电路的需求。

4.2 储能电感L的参数选择

稳压电源工作时,流过电感的电流由直流平均值和纹波分量两部分组成。纹波分量是三角波,设其增量为ΔI,则

则根据电感选择公式[10],得

因为开关频率f为50kHZ,通过计算得电感L的值为50μH左右,在实际工程中为保证充分余量,通常选用100μH/2A的电感,在实际制作的过程中发现自行绕制的电感效果不是太好,所以建议最好购买正规产商生产的电感。

4.3 滤波电容C的参数选择

在VT导通的TON期间内,由滤波电容C 给负载供电,设此期间C上的电压降为△U0(△U0为纹波电压)。则

又                 

所以              

因为开关频率f为50kHZ,同时为了尽量减小输出电压的纹波,所以滤波电容C取2200μF/50V,保证了充分的余量。

4.4 续流二极管D的参数选择

在电路中续流二极管的主要作用是开关管导通时,续流二极管D截止,电容C对负载供电;开关管关断时,续流二极管D导通,Ui与电感L通过续流二极管D对电容器C充电,并同时对负载RL供电。所以D的最大反向电压为U0,流过的最大电流是输入电流II,此外续流二极管还需满足开关频率高,导通电阻小的要求,通常选用肖特基二极管,本电路选择三端肖特基二极管MBR60100CT,其最大反向工作电压为100V,最大工作电流为60A,保证了充分的余量。

5 .开关电源电路的测试与相关数据计算

5.1 实验电路的原理图绘制

5.2 实验电路的PCB图绘制

    在绘制PCB图时,应尽量把电源线和地线布粗,这样可以减少损耗,并且可以使电路过大电流。为了画图的方便以及节约空间,信号线则可以细点。另外,若焊接电路板时背面需要用导线连接,靠近输入输出处的导线应使用粗线,避免分流,反馈线可使用较细的导线。

5.3 实验电路相关参数的测试

5.3.1 负载调整率(输入电压UI为10V,输出电压UO为20V)

                                                                           表5.3.1 负载调整率

所以负载调整率为:(20.00-19.59)/20≈2%。

5.3.2 电压调整率(输出电压UO为20V,输出端负载R不变)

                                                                       表5.3.2 电压调整率

所以电压调整率为:(20.15-19.86)/20=1.45%。

5.3.3 升压电路的效率

                                                                  表5.3.3升压电路的效率

5.4 实验结果分析

综上实验数据可得,本升压电路可以实现最高36V的输出,最大输出电流可达1.6A,效率高于86%,负载调整率约为2%,电压调整率为1.45%,并且具有过压保护和过流保护的能力。

6 .总结

   本文介绍了一种基于TL494的DC-DC升压型开关电源电路。在制作的过程中,采用非隔离型的DC-DC开关电源主电路,通过电压反馈调节PWM波的占空比,实现输出电压的稳定。并通过对开关管T、储能电感L、滤波电容C和续流二极管D的参数选择,使该电路达到最佳的性能指标。最后,对电路的负载调整率、电压调整率、效率进行测试。从实验结果可得,该电路实现了从(15V~20V)到(18V~36V)的升压功能,具有效率较高,良好的负载调整率和电压调整率的特点,且性能稳定,抗干扰能力强。

参考文献

[1] 李文才,鲁传峰.新一代开关电源发展趋势[J].能源技术与管理.2008(05).

[2] 方舟.通信高频开关电源的现状及展望[J].电源世界,2008(10):35-37.

[3] 赵容,张波.同步整流关键技术及主要拓扑分析.电路与系统学报[N],2004,9(3):

100-104.

[4]  白炳良,周慰君.基于TL494开关电源的设计.大学物理实验.2009(01).

[5]  林荫宇.移相全桥零电压PWM变换器的建模与仿真[J].重庆大学学报.2000,78-85.

[6]  邹怀安,张锐.开关电源的PWM-PFM控制电路[J].电子质量.2004(03).

[7]  华伟.通信开关电源的五种PWM反馈控制模式研究[J].通信电源技术.2001(02).

[8]  沙占友,孟志永.开关电源专用芯片的选择及其应用[J].电源技术应用.2012(05).

[9]  刘慧娟,黄权.开关电源效率的优化设计[J].声屏世界.2015(S1).

[10] 毛景魁.锂电池并联的 Boost 升压电路设计与仿真[J].实验室研究与探索.2012(9): 214-218.

⑹ TL494怎么稳压的,整个的调节过程是怎么样的

TL494是用它产生PWM脉冲,控制开关管,就是将其接入boost升压斩波电路的开关管,通过调整TL494的pwm控制开关管导通,达到调节输出电压的目的,建议你看看开关电源。~~~~你盆友说的我不懂,不过的确可以通过反馈进行调节,但绝对不是他说的那样。

TL494是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广泛应用于桥式单端正激双管式、半、全桥式开关电源。

阅读全文

与tl494升压电路图相关的资料

热点内容
长沙华为手机维修电话 浏览:791
cad家用电器模块免费下载 浏览:376
南宁哪里卖家电 浏览:719
冬季除家具甲醛怎么除 浏览:630
冷藏展示柜不制冷维修视频 浏览:627
虎斑尚品家居 浏览:924
宣化哪里维修家电 浏览:272
凯迪拉克ats售后维修价格对比 浏览:826
小松鼠地暖售后维修 浏览:676
致爱家具 浏览:679
赖氏家具武汉 浏览:242
数字电路音箱 浏览:777
自然主义家具官网 浏览:748
住房维修基金专用收据什么办 浏览:633
液晶电视维修工资如何 浏览:303
佛山美的洗衣机维修电话是多少 浏览:565
买二手机怎么识别翻新机 浏览:103
杰克绷缝机维修视频 浏览:950
北京约克维修电话 浏览:839
海口苹果维修中心在哪 浏览:283