『壹』 科学实验房子电路怎么设计
1、在纸上画出房间的平面图,标出书桌、床、窗户的位置。
2、房间需安装两盏电灯照明灯和阅读灯并由两个开关分别控制,在房间平面图上标出电灯,开关的位置。
3、然后组装电路,以上是科学实验房子电路设计流程。
『贰』 简述硬件电路的设计流程
集成电路设计的流程一般先要进行软硬件划分,将设计基本分为两部分:芯片硬件设计和软件协同设计。
集成电路设计的流程一般先要进行软硬件划分,将设计基本分为两部分:芯片硬件设计和软件协同设计。芯片硬件设计包括:
1.功能设计阶段。
设计人员产品的应用场合,设定一些诸如功能、操作速度、接口规格、环
境温度及消耗功率等规格,以做为将来电路设计时的依据。更可进一步规划软
件模块及硬件模块该如何划分,哪些功能该整合于SOC 内,哪些功能可以设
计在电路板上。
2.设计描述和行为级验证
功能设计完成后,可以依据功能将SOC 划分为若干功能模块,并决定实现
这些功能将要使用的IP 核。此阶段间接影响了SOC 内部的架构及各模块间互
动的讯号,及未来产品的可靠性。
决定模块之后,可以用VHDL 或Verilog 等硬件描述语言实现各模块的设
计。接着,利用VHDL 或Verilog 的电路仿真器,对设计进行功能验证(function
simulation,或行为验证 behavioral simulation)。
注意,这种功能仿真没有考虑电路实际的延迟,也无法获得精确的结果。
3.逻辑综合
确定设计描述正确后,可以使用逻辑综合工具(synthesizer)进行综合。
综合过程中,需要选择适当的逻辑器件库(logic cell library),作为合成逻辑
电路时的参考依据。
硬件语言设计描述文件的编写风格是决定综合工具执行效率的一个重要
因素。事实上,综合工具支持的HDL 语法均是有限的,一些过于抽象的语法
只适于作为系统评估时的仿真模型,而不能被综合工具接受。
逻辑综合得到门级网表。
4.门级验证(Gate-Level Netlist Verification)
门级功能验证是寄存器传输级验证。主要的工作是要确认经综合后的电路
是否符合功能需求,该工作一般利用门电路级验证工具完成。
注意,此阶段仿真需要考虑门电路的延迟。
5.布局和布线
布局指将设计好的功能模块合理地安排在芯片上,规划好它们的位置。布线则指完成各模块之间互连的连线。注意,各模块之间的连线通常比较长,因此,产生的延迟会严重影响SOC的性能,尤其在0.25 微米制程以上,这种现象更为显著。 目前,这一个行业仍然是中国的空缺,开设集成电路设计与集成系统专业的大学还比较少,其中师资较好的学校有 上海交通大学,哈尔滨工业大学,哈尔滨理工大学,东南大学,西安电子科技大学,电子科技大学,复旦大学,华东师范大学等。这个领域已经逐渐饱和,越来越有趋势走上当年软件行业的道路。
『叁』 集成电路设计流程的设计过程
1.电路设来计
依据电路功能源完成电路的设计。
2.前仿真
电路功能的仿真,包括功耗,电流,电压,温度,压摆幅,输入输出特性等参数的仿真。
3.版图设计(Layout)
依据所设计的电路画版图。一般使用Cadence软件。
4.后仿真
对所画的版图进行仿真,并与前仿真比较,若达不到要求需修改或重新设计版图。
5.后续处理
将版图文件生成GDSII文件交予Foundry流片。
『肆』 设计电子电路的基本步骤方法
设计电子电路的基本步骤方法
实际的电子电路往往是很复杂的,是由多种基本电路组合而成,设计时要根据具体情况,遵循一些规律去合理地设计电路的形式。下面,我为大家分享设计电子电路的基本步骤方法,希望对大家有所帮助!
明确设计任务要求
充分了解设计任务的具体要求如性能指标、内容及要求,明确设计任务。
方案选择
根据掌握的知识和资料,针对设计提出的任务、要求和条件,设计合理、可靠、经济、可行的设计框架,对其优缺点进行分析,做到心中有数。
根据设计框架进行电路单元设计、参数计算和器件选择
具体设计时可以模仿成熟的电路进行改进和创新,注意信号之间的关系和限制;
接着根据电路工作原理和分析方法,进行参数的估计与计算;
器件选择时,元器件的工作、电压、频率和功耗等参数应满足电路指标要求。
元器件的极限参数必须留有足够的裕量,一般应大于额定值的1.5倍,电阻和电容的.参数应选择计算值附近的标称值。
电路原理图的绘制
电路原理图是组装、焊接、调试和检修的依据,绘制电路图时布局必须合理、排列均匀、清晰、便于看图、有利于读图;
信号的流向一般从输入端或信号源画起,由左至右或由上至下按信号的流向依次画出务单元电路,反馈通路的信号流向则与此相反;
图形符号和标准,并加适当的标注;
连线应为直线,并且交叉和折弯应最少,互相连通的交叉处用圆点表示,地线用接地符号表示。
;『伍』 电路设计的设计流程
一般PCB基本设计流程如下:前期准备--PCB结构设计--PCB布局--布线--布线优化和丝印--网络和DRC检查和结构检查--制版。
第一:前期准备。这包括准备元件库和原理图。“工欲善其事,必先利其器”,要做出一块好的板子,除了要设计好原理之外,还要画得好。在进行PCB设计之前,首先要准备好原理图SCH的元件库和PCB的元件库。元件库可以用peotel自带的库,但一般情况下很难找到合适的,最好是自己根据所选器件的标准尺寸资料自己做元件库。原则上先做PCB的元件库,再做SCH的元件库。PCB的元件库要求较高,它直接影响板子的安装;SCH的元件库要求相对比较松,只要注意定义好管脚属性和与PCB元件的对应关系就行。PS:注意标准库中的隐藏管脚。之后就是原理图的设计,做好后就准备开始做PCB设计了。
第二:PCB结构设计。这一步根据已经确定的电路板尺寸和各项机械定位,在PCB设计环境下绘制PCB板面,并按定位要求放置所需的接插件、按键/开关、螺丝孔、装配孔等等。并充分考虑和确定布线区域和非布线区域(如螺丝孔周围多大范围属于非布线区域)。
第三:PCB布局。布局说白了就是在板子上放器件。这时如果前面讲到的准备工作都做好的话,就可以在原理图上生成网络表(Design--CreateNetlist),之后在PCB图上导入网络表(Design--LoadNets)。就看见器件哗啦啦的全堆上去了,各管脚之间还有飞线提示连接。然后就可以对器件布局了。一般布局按如下原则进行:
①.按电气性能合理分区,一般分为:数字电路区(即怕干扰、又产生干扰)、模拟电路区
(怕干扰)、功率驱动区(干扰源);
②.完成同一功能的电路,应尽量靠近放置,并调整各元器件以保证连线最为简洁;同时,调整各功能块间的相对位置使功能块间的连线最简洁;
③.对于质量大的元器件应考虑安装位置和安装强度;发热元件应与温度敏感元件分开放置,必要时还应考虑热对流措施;
④.I/O驱动器件尽量靠近印刷板的边、靠近引出接插件;
⑤.时钟产生器(如:晶振或钟振)要尽量靠近用到该时钟的器件;
⑥.在每个集成电路的电源输入脚和地之间,需加一个去耦电容(一般采用高频性能好的独石电容);电路板空间较密时,也可在几个集成电路周围加一个钽电容。
⑦.继电器线圈处要加放电二极管(1N4148即可);
⑧.布局要求要均衡,疏密有序,不能头重脚轻或一头沉
——需要特别注意,在放置元器件时,一定要考虑元器件的实际尺寸大小(所占面积和高度)、元器件之间的相对位置,以保证电路板的电气性能和生产安装的可行性和便利性同时,应该在保证上面原则能够体现的
前提下,适当修改器件的摆放,使之整齐美观,如同样的器件要摆放整齐、方向一致,不能摆得“错落有致”。这个步骤关系到板子整体形象和下一步布线的难易程度,所以一点要花大力气去考虑。布局时,对不太肯定的地方可以先作初步布线,充分考虑。
第四:布线。布线是整个PCB设计中最重要的工序。这将直接影响着PCB板的性能好坏。在PCB的设计过程中,布线一般有这么三种境界的划分:首先是布通,这时PCB设计时的最基本的要求。如果线路都没布通,搞得到处是飞线,那将是一块不合格的板子,可以说还没入门。其次是电器性能的满足。这是衡量一块印刷电路板是否合格的标准。这是在布通之后,认真调整布线,使其能达到最佳的电器性能。接着是美观。假如你的布线布通了,也没有什么影响电器性能的地方,但是一眼看过去杂乱无章的,加上五彩缤纷、花花绿绿的,那就算你的电器性能怎么好,在别人眼里还是垃圾一块。这样给测试和维修带来极大的不便。布线要整齐划一,不能纵横交错毫无章法。这些都要在保证电器性能和满足其他个别要求的情况下实现,否则就是舍本逐末了。布线时主要按以下原则进行:
①.一般情况下,首先应对电源线和地线进行布线,以保证电路板的电气性能。在条件允许的范围内,尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:0.2~0.3mm,最细宽度可达0.05~0.07mm,电源线一般为1.2~2.5mm。对数字电路的PCB可用宽的地导线组成一个回路,即构成一个地网来使用(模拟电路的地则不能这样使用)
②.预先对要求比较严格的线(如高频线)进行布线,输入端与输出端的边线应避免相邻平行,以免产生反射干扰。必要时应加地线隔离,两相邻层的布线要互相垂直,平行容易产生寄生耦合。
③.振荡器外壳接地,时钟线要尽量短,且不能引得到处都是。时钟振荡电路下面、特殊高速逻辑电路部分要加大地的面积,而不应该走其它信号线,以使周围电场趋近于零;
④.尽可能采用45o的折线布线,不可使用90o折线,以减小高频信号的辐射;(要求高的线还要用双弧线)
⑤.任何信号线都不要形成环路,如不可避免,环路应尽量小;信号线的过孔要尽量少;
⑥.关键的线尽量短而粗,并在两边加上保护地。
⑦.通过扁平电缆传送敏感信号和噪声场带信号时,要用“地线-信号-地线”的方式引出。
⑧.关键信号应预留测试点,以方便生产和维修检测用
⑨.原理图布线完成后,应对布线进行优化;同时,经初步网络检查和DRC检查无误后,对未布线区域进行地线填充,用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。或是做成多层板,电源,地线各占用一层。
——PCB布线工艺要求
①.线
一般情况下,信号线宽为0.3mm(12mil),电源线宽为0.77mm(30mil)或1.27mm(50mil);线与
线之间和线与焊盘之间的距离大于等于0.33mm(13mil),实际应用中,条件允许时应考虑加大距离;布线密度较高时,可考虑(但不建议)采用IC脚间走两根线,线的宽度为0.254mm(10mil),线间距不小于0.254mm(10mil)。
特殊情况下,当器件管脚较密,宽度较窄时,可按适当减小线宽和线间距。
②.焊盘(PAD)
焊盘(PAD)与过渡孔(VIA)的基本要求是:盘的直径比孔的直径要大于0.6mm;例如,通用插脚式电阻、电容和集成电路等,采用盘/孔尺寸1.6mm/0.8mm(63mil/32mil),插座、插针和二极管1N4007等,采用1.8mm/1.0mm(71mil/39mil)。实际应用中,应根据实际元件的尺寸来定,有条件时,可适当加大焊盘尺寸;PCB板上设计的元件安装孔径应比元件管脚的实际尺寸大0.2~0.4mm左右。
③.过孔(VIA)
一般为1.27mm/0.7mm(50mil/28mil);
当布线密度较高时,过孔尺寸可适当减小,但不宜过小,可考虑采用1.0mm/0.6mm(40mil/24mil)。
④.焊盘、线、过孔的间距要求
PADandVIA:≥0.3mm(12mil)
PADandPAD:≥0.3mm(12mil)
PADandTRACK:≥0.3mm(12mil)
TRACKandTRACK:≥0.3mm(12mil)
密度较高时:
PADandVIA:≥0.254mm(10mil)
PADandPAD:≥0.254mm(10mil)
PADandTRACK:≥0.254mm(10mil)
TRACKandTRACK:≥0.254mm(10mil)
第五:布线优化和丝印。“没有最好的,只有更好的”!不管你怎么挖空心思的去设计,等你画完之后,再去看一看,还是会觉得很多地方可以修改的。一般设计的经验是:优化布线的时间是初次布线的时间的两倍。感觉没什么地方需要修改之后,就可以铺铜了(Place->polygonPlane)。铺铜一般铺地线(注意模拟地和数字地的分离),多层板时还可能需要铺电源。时对于丝印,要注意不能被器件挡住或被过孔和焊盘去掉。同时,设计时正视元件面,底层的字应做镜像处理,以免混淆层面。
第六:网络和DRC检查和结构检查。首先,在确定电路原理图设计无误的前提下,将所生成的PCB网络文件与原理图网络文件进行物理连接关系的网络检查(NETCHECK),并根据输出文件结果及时对设计进行修正,以保证布线连接关系的正确性;网络检查正确通过后,对PCB设计进行DRC检查,并根据输出文件结果及时对设计进行修正,以保证PCB布线的电气性能。最后需进一步对PCB的机械安装结构进行检查和确认。
第七:制版。在此之前,最好还要有一个审核的过程。
PCB设计是一个考心思的工作,谁的心思密,经验高,设计出来的板子就好。所以设计时要极其细心,充分考虑各方面的因数(比如说便于维修和检查这一项很多人就不去考虑),精益求精,就一定能设计出一个好板子。