1. 世界上第一块电路板谁发明的
分类: 电脑/网络 >> 硬件
问题描述:
世界上第一块电路板谁发明的?
谢谢...
解析:
1、1903年,英国的Hanson申请与印刷电路板有关的“用电缆连接及相同连接法的改进”专利,这是最早的电历茄坦路和技术之一。
2、1936年肢桐,英国Eisler博士提出“印刷电路(p- rintcricuit)”这个概念,被称为“印刷电路板之父”。
3、1953年出现了双面板。
4、1960年出现了多层板。纳桐
5、1960年代末期,聚酰亚胺软性电路板问世。
6、1970年,产生了多层布线板。
7、1990年代初,又产生了积层多层印制板。
杰克 基尔比(JackpKilby)发明了集成电路 在集成电路出现之前,电子设备大多采用体积庞大且容易损坏的电路,主要是真空管。p但1958年基尔比在德州仪器半导体实验室发明的集成电路改变了整个电子世界,并使微处理器的出现成为可能。
2. 电生磁是谁发现的
磁生电是英国科学家法拉第发现的。磁生电原理是闭合电路的一部分导体做切割磁感线运动时,在导体上就会产生电流的现象叫电磁感应现象,产生的电流叫做感应电流,发电机便是依据此原理制成。
发现过程:
1831年电学大师法拉第发现了磁能够生电。他找来两根长约62米的铜导线和一根粗长木棍,分别把两根铜导线缠绕在木棍上,铜导线的两端分别与电流计电源相联。然后他把电源开关合上,这时,他似乎感到电流搏罩计指针跳动了一下,然后指又回到0点,难道在开关合的瞬时产生了感应电流?法拉第把开关拉掉,准备重复合后再看一次,当开关刚拉开时,他又看到指针跳荡了一下,然后回到0点。他反基氏闹复把开关拉开、合上,都发现了相同的结果。
根据这个实验,法拉第总结出电磁感核乱应的规律:当穿过感应回路中的磁通量发生变化时,回路中就会产生感应电流,感应电流方向总是阻碍回路中磁通量的变化,大小与单位时间内的磁通量变化成正比。负电荷,在金属内的电子流动方向与常规电流的方向相反。
3. 电子电路大师看过来!有图看!帮我看看这电容的作用是什么,如何检修谢谢!
电容参数是80伏,5600uF的电解电容局汪,肯定是用于直洞腊厅流滤波,稳压的。用手触摸电容顶端,看所有电容的温度是否接近。有特别发烫的可能性能不好了纳隐。
4. 电路大师在线询问
这样情况的总闸就会跳闸,更多的是总闸的容量选择错误,或者存在漏电保护。而与电压波动关系不大;
如果你非要加个稳压器,得估算家电总功率有多少,再加上10%-20%的余量;
5. 电路大师进,
把插排从电源插孔里拨出,再去合上空气开关,看看空气开关能否合上。能够合上,电脑有故障或插排内短路。不能合上,线路短路或空气开关已坏。就这样去判断吧!
6. 基尔霍夫是哪人
基尔霍夫,Kirchhoff,Gustav Robert(1824~1887),德国物理学家。1824 年3 月 12 日生于普鲁士的柯尼斯堡(今为俄罗斯加里宁格勒),1887 年10 月17日卒于柏林。基尔霍夫在柯尼斯堡大学读物理,1847年毕业后去柏林大学任教,3年后去布雷斯劳作临时教授 。1854年由R.W.E.本生 推荐任海德堡大学教授。1875年因健康不佳不能做实验,到柏林大学作理论物理教授,直到逝世。
1845年,21岁时他发表了第一篇论文,提出了稳恒电路网络腔隐中电流、电压、电阻关系的两条电路定律,即著名的基尔霍夫第一电路定律和基尔霍夫第二电路定律,解决了电器设计中电路方面的难题。后来又研究了电路中电的流动和分布,从而阐明了电路伍链厅中两点间的电势差和静电学的电势这两个物理量在量纲和单位上的一致。使基尔霍夫电路定律具有更广泛的意义。直到现在,基尔霍夫电路定律仍旧是解决复杂电路问题的重要工具。基尔霍夫被称为“电路求解大师”。
在海德堡大学期间,他与本生合作创立了光谱分析方法。把各种元素放在本生灯上烧灼,发出波长一定的一些明线光谱,由此可以极灵敏地判断这种元素的存在。利用这一新方法,他发现了元素铯和铷。
1859年,基尔霍夫做了用灯焰烧灼食盐的实验。在对这一实验现象的研究过程中,得出了关于热辐射的定律,后被称为基尔霍夫定律:任何物体的发射本领和吸收本领的比值与物体特性无关,是波长和温度的普适函数。并由此判断:太阳光谱的暗线是太阳大气中元素吸收的结果。这给太阳和恒星成分分析提供了一种重要的方法,天体物理由于应用光谱分析方法而进入了新阶段。1862年他又进一步得出绝对黑体的概念。他的热辐射定律和绝对黑体概念是开辟20世纪物理学新纪元的关键之一。1900年M.普朗克的量子论就发轫于此。
基尔霍夫在光学理论方面的贡献是给出了唤物惠更斯 - 菲涅耳原理的更严格的数学形式 。对德国的理论物理学的发展有重大影响。著有《数学物理学讲义》4卷。
7. 电路大师麻烦看看我家这电表接线对吗,我怎么感觉电费不对劲,右上角204是我家的,
1和3是进线,进线再并联分出接到其它表中,与你家无关系,比如,在进你表之前,破线接到人家表中,你就不会有此担心了吧,但那样接不安全历腊毁,所以在有接线头子的地方接线了。
2和4是到家的,只要这组线上没有接出去,就不会用到你家的电。
但接法正确,不代表用电量就一定准,因为电表也存在误差或者失准,感觉有偏差的,可以在家中,关闭其它用电器,用能大体计量的电器(比如水壶),看下功率,计时,看用多少电,和表上走的数据对比下,如果有偏差,可向房东提东校表或换表。
另外,还要注意下,到你家肢备的电线、家中的电线,有没有漏电情况存在局察。
8. 世界上第一块电路板谁发明的
印制电路板的创造者是奥地利人保罗·爱斯勒(Paul Eisler),1936年,他首先在收音机里采用了印刷电路板。1943年,美国人多将该技术运用于军用收音机,1948年,美国正式认可此发明可用于商业用途。自20世纪50年代中期起,印刷线路板才开始被广泛运用。
在PCB出现之前,电子元器件之间的互连都是依托电线直接连接完成的。
(8)电路大师世扩展阅读
线路板按层数来分的话分为单面板,双面板,和多层线路板三个大的分类。单面板,在最基本的PCB上,零件集中在其中一面,导线则集中在另一面上。因为导线只出现在其中一面,所以就称这种PCB叫作单面线路板。单面板通常制作简单,造价低,但是缺点是无法应用于太复杂的产品上。
双面板是单面板的延伸,当单层布线不能满足电子产品的需要时,就要使用双面板了。双面都有覆铜有走线,并且可以通过过孔来导通两层之间的线路,使之形成所需要的网络连接。
多层板是指具有三层以上的导电图形层与其间的绝缘材料以相隔层压而成,且其间导电图形按要求互连的印制板。多层线路板是电子信息技术向高速度、多功能、大容量、小体积、薄型化、轻量化方向发展的产物。线路板按特性来分的话分为软板(FPC),硬板(PCB),软硬结合板(FPCB)。
9. 求电路大师教下,把led灯接在摩托车钥匙开关上一打开就亮,一踩刹车就闪,闪光器已有
按你的电瓶接个继电器,比如这个搏咐含是12V5脚
30接简纤LED,LED另一线搭铁-
87a接钥匙电ACC+
87接闪光器输出+,闪光器输入+接刹车灯+,闪光器-搭铁
85接刹车灯+
86接搭铁基笑-
10. 逆向常用555定时器芯片(CMOS工艺)
背景知识:一定的电子学基础
这篇文章介绍LMC555定时器芯片是如何工作的,从芯片上微小的晶体管和电阻到构成其的功能单元如比较器和镜像电流源。广泛使用的555时基集成电路被认为是世界上卖地最好的集成电路,自从1970年模拟电路大师Hans Camenzind
设计出该款芯片,自今已经售出数十亿片。LMC555是一款低功率CMOS工艺555芯片。不像传统的双极型三极管,CMOS芯片是由低功耗MOS管构成的。通过仔细地研究图片模型,我们将理解它的工作原理。
集成电路的结构
下面的图片是LMC555的硅基模型在显微镜下观察得到的,主要功能单元均已标记(来自 Zeptobars的 照片)。模型非常小,仅仅1mm见方。其中黑色的大圈是芯片与外部引脚的连接部分。一层薄金属层将芯片的各个部分连接在一起。在图中,金属就是那些清晰可见的白色线条和区域。芯片上不同的部分被标记不一样的颜色。芯片的不同部件是通过向硅基中掺入不同的杂质来改变其特性而制成得。N型半导体具有过量的电子(使其为负),而P型半导体缺乏电子(使其为正)。硅基顶部不同颜色标记的是多晶硅线路。硅片和多晶硅是芯片的主体部分,其上是各种由金属层连在一起的晶体管和电阻。
LMC555 各个功能块
555 定时器的简要说明
555芯片是极其多用途的芯片,有着多达数百的不同应用包括时基计时或是开关以及电压控制的振荡器和调节器。我将通过最简单的电路振荡器——以一个固定的频率循环往复的电路,来解释芯片的功能。
用下面的图来说明555芯片用作振荡器的内部运作。外部连接的电容将不断地充电、放电从而产生振荡。在芯片内部,三个电阻构成分压器产生相对供电电压的1/3和2/3的参考电压。外电容将在该范围内充、放电,进而产生振荡,如左边的图片所示。更为详细的是:电容器将通过外部电阻器缓慢充电(A段),直到其电压达到2/3参考值,在B点,阈值(上)比较器切换触发器关闭输出,这将打开输出晶体管,致使放电晶体管导通使电容缓慢放电。当电容电压达到1/3参考电压(D点)时,触发下比较器连通,同时使触发器和输出处于通路,如此循环往复。电阻和电容的值决定计时(即周期),从微秒到数小时。
555 振荡器工作原理
总的来说,555时基电路的关键部件是检测电压上下界的比较器,设置该界限的分压器,记录充放电状态的触发器以及放电晶体管。555时基电路还有2个上面尚未提及的针脚(置位和电压控制端),它们是用于其他更宏盯帆复杂电路的。
IC 内的晶体管
像大多数集成电路一样,CMOS 555定时器芯片由两种类型的晶蔽雹体管PMOS和NMOS构成。相比之下,经典的555定时器使用了旧技术的双极型晶体管(NPN管和PNP管)。CMOS使用地非常广泛,因为它的功率远低于双极型晶体管。CMOS晶体管可以非常密集地集成在芯片中,不会过热,这就是为什么CMOS自20世纪80年代以来就统治了微处理器市场。尽管555不需要很多晶体管,但是低功耗仍然是一个优势。
下图显示了芯片中的NMOS晶体管,其截面如下。由于晶体管是由重叠层构成的,因此模型图有点难以理解,但横截面应该有助于说明。硅片的不同颜色表示已被掺杂以形成N和P区的区域。绿色矩形--硅上方的一层是多晶硅。白色的矩形是顶部的金属层。电极是层之间的连接部分。
LMC5555 CMOS 定时芯片中的NMOS 晶体管的结构
MOS晶体管可以被认为是基于 栅极 上的电压来连接或断开 源极 和 漏极 的 开关 。晶体管由已经掺杂为负极(N)的两个矩形的硅带组成,嵌入在下面的P型硅基中。 栅极 由 漏极 与 源极 之间的部分和其表面的导电多晶硅层组成。 栅极 通过非常薄的绝缘氧则改化物层与下面的硅分离。如果在 栅极 加上电压,则会产生电场,该电场会改变 栅极 之下的硅半导体的特质,从而形成电流导通层。照片还显示出金属层连接到 源极 ,以及“电极”,其穿过绝缘氧化物将硅层连接到金属层。
第二种晶体管是PMOS,如下所示。PMOS晶体管在许多方面与NMOS相反;因此它们被称为 互补 MOS管,就是CMOS 中的Ç (互补) 。PMOS管由嵌入在N型硅基中的P掺杂硅的 源极 和 漏极 构成。当晶体管 栅极 上为 低 电压时(与NMOS 高 电压相反)导通,导致电流从 源极 流到 漏极 。连接 源极 、 栅极 和 漏极 的金属层下面清晰可见,其上有通到底层的圆形通孔。(请注意,右侧的图不是横截面,而是简化的“俯视图”。)在芯片模型图片中,NMOS晶体管为蓝色, 栅极 为绿色,PMOS晶体管为橙色, 栅极 为粉色。
LMC555 CMOS 定时芯片中的NMOS 晶体管的结构,右侧为简化模型
555中的输出晶体管远远大于其他晶体管,并且具有不同的结构以产生高电流输出。下面的照片显示了一个输出晶体管。注意到 源极 (外侧)和 漏极 (中心)之间 栅极 的Z字形结构。还可以看到, 漏极 的金属层在右边是窄的,并且随着它离开晶体管而变宽,以便承载逐渐增加的电流。
LMC555 CMOS 定时芯片中的大型NMOS 输出晶体管
各种符号用于在原理图中表示MOS晶体管;下图显示了其中的一些。在本文中,我使用的是突出显示的那一组。
用于MOS 晶体管的各种符号
如何在硅中实现电阻
电阻是模拟电路的关键部件。不过,IC中的电阻很大,且不准确;在两片相同的芯片中,对应的电阻的阻值可能相差50%。因此,模拟IC中,考虑的电阻的相对比例而不是绝对值。这样设计,即使该阻值随制造条件而变化,这些比率也几乎保持恒定。
组成CMOS 定时器中分压器的电阻
上图显示了在芯片中组成分压器的电阻。有六个50kΩ电阻串联连接形成三个100kΩ电阻。电阻是浅白色的垂直矩形。在每个电阻器的末端,通孔和P +硅阱(粉红色方形)将电阻器连接到金属层,进而将它们连接在一起。电阻本身可能是P掺杂硅。
为了减小电流,CMOS芯片使用100kΩ电阻,远大于双极型555定时器中的5kΩ电阻。据说,555芯片是以这三个5K电阻命名的,但其设计师却说555只是500芯片系列中的任意数字。
IC 组件:镜像电流源
在模拟IC中有一些非常常见的子电路,但是咋一看似乎很神秘。镜像电流源便是其中之一。如果你看过模拟IC框图,你可能已经见到过下面的表示镜像电流源的符号了,并想知道镜像电流源是什么,以及为什么要使用它们。
镜像电流源符号
镜像电流源的想法是如果有一个已知的电流,然后可以使用简单的晶体管电路“克隆”多个电流副本。镜像电流源的常见用途是代替电阻。如前所述,IC内不容易制造大电阻,且不准确。使用镜像电流源还可以尽可能节省空间。此外,镜像电流源产生的电流几乎完全一样,而不像两个电阻产生的电流存在较大差异。
下面的电路将会解释如何用三个相同的晶体管实现镜像电流源。参考电流流经右侧的晶体管。(在这种情况下,电流由电阻设定)由于所有的晶体管都具有相同的发射极电压和基极电压,所以它们将产生相同的电流,因此左侧的电流与右侧的参考电流相匹配。为了获得更大的灵活性,可以修改镜像电流源中晶体管的相对尺寸,使镜像电流大于或小于参考电流。CMOS 555芯片使用各种晶体管尺寸来控制电路中的电流。
由PMOS 晶体管组成的镜像电流源,左侧两个晶体管镜像右侧由电阻控制
的电流
下图显的是LMC555芯片中的一个镜像电流源,由两个晶体管组成。每个晶体管实际上是并联的两个晶体管,这是芯片中的常见技巧,所以物理上来看有两对晶体管。要看到晶体管有点困难,因为金属层覆盖其中的一部分,但希望这个描述是有意义的。从顶部开始,第一个晶体管所在的宽矩形构成了 源极 , 栅极 1和 漏极 1。注意将金属层连接到 源极 的通孔。下一个晶体管共享 漏极 1,接下来是第二个 栅极 1和 源极 。由于这两个晶体管共享 漏极 ,并且 源极 和 栅极 相互连接,所以两个晶体管有效地形成一个较大的晶体管。同样地,接下来的是并联de两个晶体管: 源极 , 栅极 2, 漏极 2,。
LMC555 芯片中的两对PMOS 晶体管形成镜像电流源
右侧的原理图显示了如何将晶体管连接在一起作为镜像电流源。如果仔细看左侧照片,可以看到单个多晶硅条带蛇形地来回形成所有的 栅极 ,所以 栅极 是连接在一起的。在右侧,上部金属条将 漏极 1和 栅极 连接到电路的其余部分。下部金属条连接 漏极 2。
IC 组件:差分放大电路
要了解的第二个重要电路是差分放大电路,模拟IC中最常用的双晶体管子电路。你可能想知道一个比较器如何比较两个电压,或运算放大器如何做两个电压相减。这些就是差分放大电路的功能。
差分放大电路的简单示意图
以上示意图显示了一个简单的差分放大电路。底部的电流源提供固定负电流I,其在两个输入晶体管之间分开。如果输入电压相等,电流将分成两个相等的支路(I和I)。如果其中一个输入电压比另一个高,相应的晶体管将导通更多的电流,所以一个支路获得更多的电流,另一个支路变得更小。小的输入差异足以将大部分电流引导到“获胜”支路,从而使比较器打开或关闭。芯片在两个支路上使用镜像电流源而不是电阻,其充当有源负载并增加放大倍数。
反相器和触发器
虽然555是模拟电路,但它包含一个数字触发器来记住它的状态。触发器由反相器(简单的逻辑电路将1变为0,反之亦然)构成。555使用标准CMOS反相器,如下图所示。
CMOS 反相器的结构:顶部的PMOS 晶体管和底部的NMOS 晶体管
反相器由两个晶体管构成。如果输入为0(即低电压),则顶部的PMOS晶体管导通,将正电源连接到输出端,产生1输出;如果输入为1(高电压),则底部的NMOS晶体管接通,连接地端,产生0输出。CMOS的神奇之处是电路几乎没有能量消耗。电流不通过 栅极 (由于绝缘氧化物层),仅当输出改变状态时,唯一的功率消耗是微小的脉冲,以对导线形成的电容进行充电或放电。
下图显示的是触发器。两个反相器连接在一个回路中以形成锁存器。如果顶部反相器输出1,则底部输出0,形成稳定的循环。如果顶部反相器输出0,则底部输出1,如此形成稳定的循环。
LMC555 CMOS 定时芯片中触发器的电路图
要更改存储在触发器中的值,只需将新值强制写进入锁存器,即可用强力重写现有值。为此,底部的反相器是“弱”的,使用低电流晶体管。这允许置位端或复位端输入使弱反相器过压,并且锁存器将立即翻转到正确的状态。R(复位)和S(置位)输入来自比较器,并通过晶体管将锁存器输入为高或低。复位信号来自输入引脚,并通过二极管将锁存器输入高电平;复位反相器的输出电流由镜像电流源控制。复位将S拉低,阻止S端矛盾的输入。
CMOS 555 与传统双极型555 对比
常用的555定时器是在1970年设计的,而CMOS工艺(ICM7555)直到1978年才发布。本文中描述的LMC555在1988年左右出现,而模型是的1996年。
下面的图像将同规模的经典的555定时器(左)与CMOS LMC555(右)进行比较。虽然双极芯片由通过金属层连接的硅构成,但是CMOS芯片具有附加的多晶硅互连层,这使得芯片看起来上更加复杂。CMOS芯片较小,并且在底部和右上方有很多未被使用的空间,因此可以做得更小。CMOS晶体管比双极晶体管复杂得多。除了输出晶体管,双极型晶体管都是简单的独立单元。相比之下,大多数CMOS晶体管是由两个或更多个并联的晶体管构成的。经典555使用比CMOS 555更多的电阻,分别为16、4个。
模型照片:同规模的555 定时器(左)和CMOS 555 定时器(右)
可以从照片中看到CMOS芯片中的功能块较小。常规555中的最小线为10-15μm,而这在CMOS芯片中为6μm。更高级的芯片在1996年采用350nm工艺(约17倍),因此LMC555无处不在CMOS技术的尖端。
这些芯片相比较,反映出CMOS的功耗优势。标准555定时器通常使用3 mA电流,而此CMOS工艺的仅使用100μA(其他类型的低于5μA)。555的输入可以达到0.5μA,而CMOS版本的输入使用非常低的10pA,相差四个数量级。较小的输入“穿透”电流允许CMOS更长的延迟。
结论
起初,芯片的照片看起来太过复杂。但仔细看看LMC555 CMOS定时器芯片的模型可以看出构成电路的组件。可以把PMOS和NMOS分别拿出来管,了解它们的原理以及如何组合到电路中,并了解整个芯片的工作原理。由于CMOS芯片具有经典双极555芯片中不存在的多晶硅层,因此需要更多的努力来了解CMOS芯片。但从根本上说,两个芯片都使用类似的模拟功能块:镜像电流源和差分放大电路。如果你发现这个CMOS工艺的555芯片看起来很有趣,那么你还应该看看我的经典555芯片的 拆卸 。感谢Zeptobars的CMOS芯片的模型照片。
在Twitter 上关注 @kenshirriff, 获取我的新文章的公告。