导航:首页 > 电器电路 > nco电路

nco电路

发布时间:2023-04-24 10:26:55

⑴ 求助,NCO仿真问题

CORDIC迭代算法的一种最直接的实现方法是,只设计一级CORDIC运算迭代单元,然后在系统时钟的驱动下,将本级的输出作为本级的输入,通过同一级迭代完成运算。这种方法虽然很直观,但是为了将计算结果提供给下一级运算而导致占用了大量的寄存器,带来许多额外的资源消耗。而最大的缺点是运算速度较慢(需要n-1个时钟周期才能输出一个数据),不利于数据的高速实时处理。因此在实际设计中,采用的是图2所示的由16级CORDIC运算单元组成的流水线结构,正常工作时只需1个时钟周期就能输出1个数据,为数据实现高速实时处理提供了前提。每一级实现的功能是根据式(5)进行一次迭代,移位的位数等于当前的迭代级数,加减法选择由该级中Z的最高位(符号位)决定,得到下一级的X、Y和Z的值。经过16级流水线运算后,Z的值变为0,X和Y的值则为初始值z0的余弦和正弦值。每一级电路结构主要包括2个移位器和3个加(减)法器,级与级之间直接相连,不需要额外的寄存器。θi的值为arctan(2-i),可将该小数转换为二进制数后,存储于存储单元中,为每一级流水线提供查找表。若对于16级的流水线结构,则的范围是0~15。利用ALTERA公司的QuartusII软件,采用VHDL硬件描述语言对上述数控振陵竖荡器结构进行描述,在Modlesim上旁禅通过功能仿真,结果正确后综合出电路网表尺启大,最后将程序下载至ALTERA公司生产的Stratix器件EP1S20B780C6实现。由于设计中采用了Stratix器件,该器件的32位加减器工作频率可以达到90MHZ以上,为产生高速的正交信号提供高速可靠的的工作时钟。考虑到NCO的工作时钟瓶颈是在相位累加器,因此可以根据具体需要缩减相位累加器的位数来提高NCO的工作时钟。本文设计的NCO工作时钟为100MHz,相位累加器的位数为16位,输入的频率控制字为4CCCH,根据公式:其中:Φword为输入的频率控制字;fclk为工作时钟;N为相位累加器位数,可算出NCO输出的正余弦信号的频率;fout为30MHZ;频率分辨率Δf≈1.5kHz。频率分辨率说明了若通过输入频率控制字来改变输出正余弦信号的频率时,可以达到1.5kHz的最小步进。另外,也可以根据实际需要的频率改变输入频率控制字值。当然,NCO输出频率的上限要受到Nyquist定律的限制,即fout的最大值为fclkP2,实际设计一般不大于0.4fclk。图3为数控振荡器的部分仿真时序图。

⑵ 平方环法的原理

在软件无线电(SDR)技术实现的收发系统中,数字锁相环在载波同步、位同步、相干解调、信号跟踪、频率选择等方面发挥着重要作用,已成为数字调制/解调,数字上变频/下变频中不可缺少的核心器件.接收机为了提取载波,普遍采用平方环法和科斯塔斯环法,其中平方环以其电路结构简单而得到了广泛应用.但在平方环电路的设计中,由于NCO(或VCO)工作在2ωc频率上,当环路锁定后,其NCO(或VCO)的输出需经过二分频才能得到所需载波.而二分频电路在实现过程中,特别是在对NCO进行数字分频时,用FPGA实现太耗资源.
以下提出一种新的数字平方环电路,实现了从BPSK信号中提取相干载波的功能,简单易行,便于实现,并对其进行了数学推导和建模仿真,具有良好的实用价值.
1锁相环的结构
锁相环(PLL)由鉴相器(PD)、环路滤波器(LF)以及数控振荡器(NCO)组成,如图1所示.
鉴相器通常由乘法器来实现,鉴相器输出的相位误差信号经过环路滤波器滤波后,作为数控振荡器的控制信号,而数控振荡器的输出又反馈到鉴相器,在鉴相器中与输入信号进行相位比较.PLL是一个相位负反馈系统,当PLL锁定后,数控振荡器的输出信号相位将跟踪输入信号的相位变化,这时数控振荡器的输出信号频率与输入信号频率相等,但相位保持一个微小误差.
2平方环法的工作原理
在平方环载波恢复电路中,BPSK信号经平方后得到两倍载频的频谱分量,用锁相环提取这一分量,然后进过二分频可得到载频分量,如图2所示.
因鉴相器采用乘法器实现,则鉴相器输出相位误差信号为:
其中,Kd=KpA/4.环路滤波器的输出仅与数控振荡器输出和输入信号之间相位差有关,控制电压,以准确地对数控振荡器进行调整.显然,当本地恢复的同相载波与调制载波达到同频同相时,△φ=0.因此,解调的关键在于调整NCO输出信号的频率和相位,使其最终满足△φ=0或在一个很小的范围内,即相干解调的本地载波同步问题.锁相环在工作时可能锁定在任何一个稳定平衡点上.这意味着恢复出的相干载波可能与所需要的理想本地载波同相,也可能反相.由于本地参考载波有0,π模糊度,因而解调得到的数字信号可能极性完全相反,从而1和0倒置.这对于数字传输来说当然是不能允许的.克服相位模糊度最常用且最有效的方法是在调制器输入的数字基带信号中采用差分编码.
3改进平方环的工作原理
改进的平方环载波恢复电路,如图3所示.利用DDS产生的NCO数控振荡器能够输出完全正交的正余弦信号,并考虑到三角函数之间的关系sin(2ωct+2△φ)=2sin(ωct+△φ)cos(ωct+△φ),因此这里将NCO的频率锁定在载波频率ωc上,然后将NCO两路正余弦输出通过一个乘法器再增益2倍,并且在FPGA实现时,只需要进行简单的移位就能完成乘除法的运算,输出就为传统平方环的NCO输出,由于数控振荡器将频率锁定在ωc上,所以它的正弦输出即为提取的载波,省去了二分频电路.由于传统的二分频电路均采用数字分频电路,不能保持原有的正弦波形,因此还需要附加滤波器等电路.相比改进的电路要复杂得多,并且在实现上也不如改进之后的容易.
4环路部件
4.1 鉴相器
在锁相环中,鉴相器(又称为相位检测器)是一个相位比较装置.它是将输入信号与数控振荡器的输出信号的瞬时相位进行比较,产生一个输出电压.这个电压的大小,直接反映两个信号相位差的大小;这个电压的极性,反映输入信号超前或滞后于数控振荡器输出信号的相对相位关系.由此可见,鉴相器在环路中是用来完成相位差与电压变换的,其输出误差电压是瞬时相位误差的函数.
4.2环路滤波器
环路滤波器用于衰减由于输入信号噪声引起的快速变化的相位误差和平滑相位检测器泄露的高频分量即滤波,以便在其输出端对原始信号进行精确的估计,环路滤波的阶数和噪声带宽决定了环路滤波器对信号的动态响应.文献[5]对几种常用的环路滤波器性能进行了详细的分析.由于一阶环路滤波器会产生稳态相差,从而降低系统误码性能;三阶环路滤波器实际实现难度较大;二阶环路滤波器在直流增益为无穷大,而频偏为常数的情况下,仍然能够实现稳态,实现难度适宜,即采用二阶环路滤波器,其结构框图如图4所示.
式中:ξ为环路阻尼系数,通常取0.707;ωn为阻尼振荡频率;Ts为频率控制字更新周期;Kd为环路增益.详细的推导见参考文献[6].因此环路滤波器参数的设计关键在于ωn,Kd.通常设计时用滤波器的噪声带宽Bn来取代ωn,即:.锁相环路的各种性能对叫ωn,ξ的要求存在着矛盾和统一,增大叫ωn,ξ,可以增大捕获带,减小捕获时间,加强对NCO噪声的滤除,减小稳态相关,增大同步带,增大同步扫描频率;减小ωn,ξ,可以加强对输入噪声的滤除,延长平均跳周时间.增强一方性能,则会降低另一方性能,因此合理设计环路滤波器的参数能够优化系统的性能.
4.3数控振荡器
NCO在环路中的作用就是产生理想的频率可变的正弦和余弦,确切地说是产生一个频率实时可变的正弦样本.正弦样本可以用实时计算的方法产生,但在高速采样频率中,NCO产生正弦和余弦的最有效办法就是查找表法,即事先根据NCO正余弦相位计算好相应的正余弦值,并以相应的相位角度作为波形存储器(ROM)的取样地址来存储对应相位的正余弦值.NCO的相位,可通过固定的频率控制字(载波频率)与环路滤波器的输出累加和相加得到,即可把存储在波形存储期内的波形抽样值(二进制编码)经查找表查出,完成相位到幅值转换.NCO内部ROM正余弦表的大小影响输出波形的精度,越大的ROM正余弦表,得到的波形输出越理想,但同时增加了硬件资源.考虑到正弦信号的对称性,只存储1/4的周期,即0~π/2的波形,通过对输入到波形ROM的地址及其输出数据的关系,可按照一定算法予以实现.
5仿真与分析
利用Simulink对改进的平方锁相环进行了仿真.由于用FPGA实现时,可直接定义DDS为两路正交的输出,而在Simulink模型中,数控振荡器的输出仅为一端输出.在此为了简单起见,搭建锁相环模型时用到了两个数控振荡器,为得到正交的输出只需要将两个数控振荡器的相位差定为π/2即可.这样做不仅大大地简化了搭建模型的时间,而且对仿真本身没有任何影响,仿真核心部分如图5所示.仿真条件:初始相差为π/3;初始频偏为5 kHz;调制方式为BPSK;码元速率为2 Mb/s;载波频率为4 MHz.
仿真模型如图6所示.其中,Bernoulli BinaryGenerator和sine Wave模块分别产生伯努利分布的随机二进制数序列和载波信号,将随机二进制数序列通过简单的变换模块,生成双极性不归零码,再一起送人Proct模块完成BPSK调制.因为该仿真主要是验证算法的可行性,所以假设是在理想的信道下传输的.在接收解调端,使用乘法器Proct1完成平方功能,也可将该乘法器用绝对值模块等非线性器件模块代替.Proct2作为锁相环的鉴相器,并且该锁相环路为二阶环.为了验证该算法的可行性,设置NCO的中心频率与发送载波频率之间有一定误差,控制灵敏度也可通过仿真实验确定.为了更好地比较仿真结果,SineWavel模块的频率与NCO设置的中心频率一致,并将输出一起送进示波器进行观察分析.
示波器Scope2对比显示了双极性不归零码与相干载波乘积的输出和未经过锁相环路乘积的输出.图7给出了乘以载波之后的信号波形(示波器的横坐标表示时间轴,物理符号是t,单位为s,物理量为2μs;纵坐标表示信号的强度).为了更加清晰地观察图形,图7波形是低通和抽样判决器之前的波形.从图中对比不难看出,改进的锁相环路能够很好地将信号解调出来,从而达到了预想的效果,并通过仿真得知其仍然能够应用于相关的领域(如调制解调),然而对于有相位差和频偏的载波已经不能解调出原始的信号了.仿真中,如果减小NCO的灵敏度,可观察到锁相环失锁.示波器Scope对比显示了原始双极性不归零码和解调判决的输出,如图8所示(示波器的横坐标表示时间轴,物理符号是t,单位为s,物理量为5μs;纵坐标表示信号的强度).解调输出的序列比原始序列稍有延迟,但是不难发现,改进的平方环载波恢复电路能够准确地解调调制后的信号,延迟是由于解调模块中的低通滤波和抽样判决引起的.
6 结 语
讲述了平方锁相环的工作原理,并着重讨论了设计思想和过程.在通信飞速发展的今天,进一步简化了锁相环路,该想法为以后的发展提供了很大的参考价值与创新理念,使得平方环不仅仅局限于应用到输入信号载波频率较低的环境中,在较高的条件下也能够用它来实现,而且平方锁相环的结构较科斯塔斯环要简单.
【看参考网站 有图解】

⑶ 振荡器的分类

振荡器主要分为RC,LC振荡器和晶体振荡器
1.RC振荡器采用RC网络作为选频移相网络的振荡器统称为RC正弦振荡器,属音频振荡器。
2.LC振荡器采用LC振荡回路作为移相和选频网络的正反馈振荡器称为LC振荡器。
LC振荡器的分类:
①变压器耦合 ·单管LC正弦振荡器 ·差分对管LC正弦振荡器
②三点式 ·电容三点式(考毕兹)振荡器 ·电感三点式(哈特莱)振荡器
③改进三点式 ·克拉泼振荡器 ·西勒振荡器羡哗
④差分对管振荡器
3.晶体振荡器
振荡器的振荡频率受石英晶体控制的振荡器。
特性:
1.物理、化学性能非常稳定。
2.具有正压电效应和逆压电效应, 石英晶体谐振频率ωs
△当ω=ωs时,压电效应最强,称ωs为基频
△当ω=nωs时,压电效应也较强,称之为泛音频率
温度系数振荡器
1.温度系碧稿数振荡器是指一种振荡器,它的振荡频率与温度之间有一个特定的关系,即不同的温度对应不同的振荡频率。反之,测量出振荡器的输出频率,就可测量出温度值。
2.高温度系数振荡器:它的振荡频率受温度的影响很大,温度稍有变化,频率就会变化很多,即对温度敏感,多用于温度传感器。
3.低温度系数振荡器:它的振荡频率受温度的影响很小,即使温度变化很大,它的频率也基本不变。石英晶体振荡器
石英晶体振荡器分非温度补偿式晶体振荡器、温度补偿晶体振荡器(TCXO)、电压控制晶体振荡器(VCXO)、恒温控制式晶体振荡器(OCXO)和数字化/μp补偿式晶体振荡器(DCXO/MCXO)等几种类型。其中,无温度补偿式晶体振荡器是最简单的一种,在日本工业标准(JIS)中,称其为标准封装晶体振荡器(SPXO)。现以SPXO为例,简要介绍一下石英晶体振荡器的结构与工作原理。
石英晶体,有天然的也有人造的,是一种重要的压电晶体材料。石英晶体本身并非振荡器,它只有借助于有源激励和无源电抗网络方可产生振荡。SPXO主要是由品质因数(Q)很高的晶体谐振器(即晶体振子)与反馈式振荡电路组成的。石英晶体振子是振荡器中的重要元件,晶体的频率(基频或n次谐波频率)及其温度特性在很大程度上取决于其切割取向。石英晶体谐振器的基本结构、(金属壳)封装及其等效电路如图1所示。
只要在晶体振子板极上施加交变电压,就会使晶片产生机械变形振动,此现象即所谓逆压电效应。当外加电压频率等于晶体谐振器的固有频率时,就会发生压电谐振,从而导致机械变形的振幅突然增大。与金属板之间的静电电容;L、C为压电谐振的等效参量;R为振动磨擦损耗的等效电阻。石英晶体谐振器存在一个串联谐振频率fos(1/2π),同时也存在一个并联谐振频率fop(1/2π)。由于Co?C,fop与fos之间之差值很小,并悔派孝且R?ωOL,R?1/ωOC,所以谐振电路的品质因数Q非常高(可达数百万),从而使石英晶体谐振器组成的振荡器频率稳定度十分高,可达10-12/日。石英晶体振荡器的振荡频率既可近似工作于fos处,也可工作在fop附近,因此石英晶体振荡器可分串联型和并联型两种。用石英晶体谐振器及其等效电路,取代LC振荡器中构成谐振回路的电感(L)和电容(C)元件,则很容易理解晶体振荡器的工作原理。
SPXO的总精度(包括起始精度和随温度、电压及负载产生的变化)可以达到±25ppm。SPXO既无温度补偿也无温度控制措施,其频率温度特性几乎完全由石英晶体振子的频率温度特性所决定。在0~70℃范围内,SPXO的频率稳定度通常为20~1000ppm,SPXO可以用作钟频振荡器。
温度补偿晶体振荡器(TCXO)
TCXO是通过附加的温度补偿电路使由周围温度变化产生的振荡频率变化量削减的一种石英晶体振荡器。
1TCXO的温度补偿方式
在TCXO中,对石英晶体振子频率温度漂移的补偿方法主要有直接补偿和间接补偿两种类型:
(1)直接补偿型
直接补偿型TCXO是由热敏电阻和阻容元件组成的温度补偿电路,在振荡器中与石英晶体振子串联而成的。在温度变化时,热敏电阻的阻值和晶体等效串联电容容值相应变化,从而抵消或削减振荡频率的温度漂移。该补偿方式电路简单,成本较低,节省印制电路板(PCB)尺寸和空间,适用于小型和低压小电流场合。但当要求晶体振荡器精度小于±1pmm时,直接补偿方式并不适宜。 (2)间接补偿型
间接补偿型又分模拟式和数字式两种类型。模拟式间接温度补偿是利用热敏电阻等温度传感元件组成温度-电压变换电路,并将该电压施加到一支与晶体振子相串接的变容二极管上,通过晶体振子串联电容量的变化,对晶体振子的非线性频率漂移进行补偿。该补偿方式能实现±0.5ppm的高精度,但在3V以下的低电压情况下受到限制。数字化间接温度补偿是在模拟式补偿电路中的温度—电压变换电路之后再加一级模/数(A/D)变换器,将模拟量转换成数字量。该法可实现自动温度补偿,使晶体振荡器频率稳定度非常高,但具体的补偿电路比较复杂,成本也较高,只适用于基地站和广播电台等要求高精度化的情况。
2.TCXO发展现状
TCXO在近十几年中得到长足发展,其中在精密TCXO的研究开发与生产方面,日本居领先和主宰地位。在70年代末汽车电话用TCXO的体积达20?以上,的主流产品降至0.4?,超小型化的TCXO器件体积仅为0.27?。在30年中,TCXO的体积缩小了50余倍乃至100倍。日本京陶瓷公司采用回流焊接方法生产的表面贴装TCXO厚度由4mm降至2mm,在振荡启动4ms后即可达到额定振荡幅度的90%。金石(KSS)集团生产的TCXO频率范围为2~80MHz,温度从-10℃到60℃变化时的稳定度为±1ppm或±2ppm;数字式TCXO的频率覆盖范围为0.2~90MHz,频率稳定度为±0.1ppm(-30℃~+85℃)。日本东泽通信机生产的TCO-935/937型片式直接温补型TCXO,频率温度特性(点频15.36MHz)为±1ppm/-20~+70℃,在5V±5%的电源电压下的频率电压特性为±0.3ppm,输出正弦波波形(幅值为1VPP),电流损耗不足2mA,重量仅为1g。PiezoTechnology生产的X3080型TCXO采用表面贴装和穿孔两种封装,正弦波或逻辑输出,在-55℃~85℃范围内能达到±0.25~±1ppm的精度。国内的产品水平也较高,如北京瑞华欣科技开发有限公司推出的TCXO(32~40MHz)在室温下精度优于±1ppm,第一年的频率老化率为±1ppm,频率(机械)微调≥±3ppm,电源功耗≤120mw。高稳定度的TCXO器件,精度可达±0.05ppm。
高精度、低功耗和小型化,仍然是TCXO的研究课题。在小型化与片式化方面,面临不少困难,其中主要的有两点:一是小型化会使石英晶体振子的频率可变幅度变小,温度补偿更加困难;二是片式封装后在其回流焊接作业中,由于焊接温度远高于TCXO的最大允许温度,会使晶体振子的频率发生变化,若不采限局部散热降温措施,难以将TCXO的频率变化量控制在±0.5×10-6以下。但是,TCXO的技术水平的提高并没进入到极限,创新的内容和潜力仍较大。
3.TCXO的应用
TCXO作为基准振荡器为发送信道提供频率基准,同时作为接收通道的第一级本机振荡器;另一只TCXO作为第2级本机振荡器,将其振荡信号输入到第2变频器。移动电话要求的频率稳定度为0.1~2.5ppm(-30~+75℃),但出于成本上的考虑,通常选用的规格为1.5~2.5ppm。移动电话用12~20MHz的TCXO代表性产品之一是VC-TCXO-201C1,采用直接补偿方式,外观如图2(b)所示,由日本金石(KSS)公司生产。
振荡器相关专业术语 1. Hartley oscillator
哈特利振荡器 2. Gunn oscillator
体效应振荡器 3. Pierce oscillator
皮尔斯振荡器 4. Wien bridge oscillator
维恩电桥振荡器 5. clock oscillator
时钟振荡器 6. collector tuning oscillator
集电极调谐振荡器 7. crystal-controlled oscillator
晶体控制振荡器 8. dielectric resonator oscillator (DRO)
介质谐振振荡器 9. numerically controlled oscillator (NCO)
数控振荡器 10. oscillator, voltage controlled (VCO)
电压控制振荡器 11. oscillator, relaxation
张弛振荡器 12. oscillator, phase shift
相位位移振荡器 13. oscillator, crystal
晶体振荡器 14. oscillator, collector tuning
集电极调谐振荡器 15. oscillator, clock
时钟振荡器 16. oscillator
振荡器 17. relaxation oscillator
张弛振荡器 18. voltage-controlled crystal oscillator (VCXO)
压控晶体振荡器 19. voltage controlled oscillator (VCO)
电压控制振荡器 20. Variable Crystal Oscillator
可变[周期]晶体振荡器

⑷ NCO的运算公式

Walther JS于1971年提出了统一的CORDIC形式。假定初始向量V1(x1 ,y1)旋转角度θ后得到向量V2(x2,y2):
即:
若每次旋转的角度θ是正切值为2 的倍数,即θi=arctan(2-i),则cosθi=(1+2-2i)-1/2 。假设以δi代表矢量的旋转方向,+1表示逆时针旋转,-1表示顺时针旋转,故第i 步旋转可用下式表示:
其中:(1+2-2i)-1/2为模校正因子。对于字长一定的运算,该因子是一个常数,用K表示,以16 bits字长为例,则:
可见,迭代运算不能使幅值比例因子恒为1。为了抵消因迭代产生的比例因子的影响,可将输入数据X,Y校正后再参与运算,以避免在迭代运算中增加校正运算,降低CORDIC算法的速度。由此运算迭代式可以简化成:
公式(5)运算仅通过加法器及移位器就可以实现。此外,若用Zi表示第i次旋转时与目标角度之差, 则:
经过n次旋转后,式(5)的n次迭代可以得到以下结果:
本文介绍的数控振荡器的设计是在式(7)的基础上,给定x0=K ,y0=0,则迭代结果为:
将所需产生的角度值作为z0输入,通过式(5)、(6)的迭代运算,迭代结果输出的xn和yn就是所需要的三角函数值。
数控振荡器的FPGA实现

图1是数控振荡器的顶层电路。由图可见,频率控制字寄存器将接收到的的频率控制字送入相位累加器,相位累加器对系统时钟进行计数,每到达输入频率控制字的值即对相位进行累加,随后将累加值送入相位相加器,与相位控制字寄存器接收到的初始相位进行相加,得到当前的相位值。其中,相位累加器是决定NCO性能的一个关键模块,可以利用FPGA器件的进位链实现快速、高效的电路结构。然而,由于进位链必须位于临近的逻辑阵列块CLB和逻辑单元LC内,所以长的进位链会减少其它逻辑使用的布线资源;同时,过长的进位链也会制约整个系统速度的提高。因此,设计中采用进位链和流水线技术相结合的办法。所谓流水线技术,即把在一个时钟内要完成的逻辑操作分成几步较小的操作,并插入几个时钟周期来提高系统的数据吞吐率。采用以上做法实现的相位累加器既能保证具有较高的资源利用率,又能大幅提高系统的性能和速度。
经过上述相位的处理之后,即可获得具有所设定初始相位的一定频率的正余弦相位序列,将此序列送入基于CORDIC算法的波形发生器,最终获得两路正交的正余弦输出序列。

⑸ 数字电路中分频比(计数模值)怎么计算

这个是看计数器的位数决定分频数的。
如4位计数器,可分频2的4次方,即16分频。
计数器Ⅰ的模为M,计数器Ⅱ的模为N
CO进位信号作为计数器2的触发信号,用乘法计算总分频器,即可实现M*N次分频。

阅读全文

与nco电路相关的资料

热点内容
青州实木家具 浏览:41
做二手家电取什么名字大方 浏览:814
房屋大额维修费会计如何处理 浏览:202
港版iphone官换机保修吗 浏览:223
美轮家具价格及图片 浏览:256
怎么查看iphone维修动手脚 浏览:772
国家电网体检的项目有哪些 浏览:629
积家电影院怎么样 浏览:547
李一家用电器 浏览:279
三维电子电路 浏览:466
香港百达翡丽维修中心维修 浏览:55
上海万家乐壁挂炉售后维修电话 浏览:353
家用电器发票几个点的 浏览:499
商家电脑版怎么看问大家 浏览:982
oppo碎屏保修范围 浏览:458
如何给华为手机维修点进行评价 浏览:676
顶级木家具喷什么国产油漆最好 浏览:270
学家具设计看什么书比较有用 浏览:532
美的家电便宜多少钱一台 浏览:524
维修佬怎么样 浏览:153