导航:首页 > 电器电路 > 四升压电路

四升压电路

发布时间:2023-03-29 09:33:26

❶ 充电宝内置电路原理

一、电路原理是:电磁转换。

充电宝自身的充电插头直接通过交流电源可以对移动设备充电且自身具有存电装置,相当于一个充电器和备用电池的混合体,相比备用电源而言可以简化一个充电插头的装置,而相比于充电器它又自身具有存电装置,可以在没有直电源或外出时给数码产品提供备用电源。

二、物体组成:

1、锂芯容量指示电路

锂芯容量指示电路由 XC61CC 系列的电压监控芯片组成。

2、电芯保护电路

电芯保护电路由过充保护、过放保护、过温保护三部分组成,HAT2027、R5402、自恢复 保险丝构建了三重保护,使锂芯安全性大大增强。

3、充电管理 电路

充电管理电路采用了 CN3066,将充电过程分为涓 流充电、恒流充电、恒压充电和维护充电四个部分,使移动随身电源能够最大程度地储备能量。

4、DC-DC 升压电路

DC-DC 升压电路采用了 MAX1771 集成芯片,可将锂芯容量在安全范围内最大限度释放, 达到对多种数码设备供电的目的。

5、功能扩展电路

功能扩展涵盖了户外活动所涉及的常见需求,具有应急夜 间高亮照、户外防盗安全警报、野营驱蚊。

(1)四升压电路扩展阅读:

对充电宝内置电路来讲,一般由四个功能构成:

第一:保护

锂电池相对于其他电池具备一些优势,比如能量密度比较大,重量轻等。但也有缺点,其中最大的缺点就是容易过充或过放,如果一节锂电池电压放电放到2.7V以下那这个电池就属于过放了。同样的充电的时候要是锂电池充到4.2V以上那也属于过充了。

锂电池过度充电和放电,这将对锂离子电池的正负极造成永久的损坏。

第二:电量指示

充电宝的电量指示都是通过对电压的采集来粗步判断移动电源的剩余电量的,随着锂电池的放电电压会慢慢从最高的 4.2V(也就是满电)到电压最低的2.7V(也就是没电),到2.7V的时候保护电路会起作用把电流掐断。

第三:充电

一般锂电池都有专门的充电IC来充的,先恒压再恒流最后涓流充电。

但有些移动电源厂商为了节省成本,没用锂电池专门充电IC而是直接用保护板来实现这个功能,虽然用保护板可以做到不过充(电池到4.2V的时候保护板会把电流切断),但对电流的寿命却会有很大的影响,同时也不安全。

锂电池充电IC里面不仅集成了充电保护功能,还有温度监测。如果温度过高会起到保护作用,这样充电的时候相对来说对电池有双保护作用,一是充电IC达到4.2V左右会切断电流,同时保护IC也会起作用。

第四:升压

内置锂电池要通过一个升压电路经稳压后才能支持对手机,PSP,IPHONE等数码产品的充电。但升压的话会牵涉到一个效率问题。例如,要集成保护板,指示灯等效率就会下降。

❷ 求输入3~6V,输出4~60V可调,输出电流10A的升压电路图

这种情况必须得有输入3-6V150A的电源,然告洞后用初级6V的1:10升压变迹渣压袜州枯器,或直接用调压器调节。

❸ 关于升压电路,原来的移动电源是3.7V-5V,现在想加一个升压模块将5V升到12V。

1、首先,不建议你用12V3W的LED,而用小功率的LED来实现照明。从理论上你的移动电源给12V3W的LED供电功率还有一点剩余,但升压模块本身就有损耗,也不排除移动电源的输出不足,或者长时间在满负工作下,里面的元件会发热,存在电路保护了或烧坏了的可能。小功率LED建议你用8颗F10,0.5W的圆头聚光灯珠来做,四并两串,直接用移动电源的USB供电,不用做任何升降压处理。F10的工作电压一般是3.1-3.4V,串后电压为2.5V,虽然低了点,亮度没完全发挥,但这样寿命还更长。0.5W的电流为150MA,四路为600MA,和你的电源输出差不多匹配。而且,8个0.5W的圆头聚光,亮度正常会超过3个1W的射灯很多。当然,你要买到质量好的。我们用单颗做到移动电源上,亮度都超炫。
2、电喇叭我不懂,如果有工作在5V的,就很理想了。

❹ 海信32寸电视电源板电路图

注:本文以海信2264电源板为例讲述。
RSAG7.820.2264板正面图

RSAG7.820.2264板背面图

图1、电源整体方框图示

一、电源输入、滤波、整流部分电路:
220V电压经过保险管F802,压敏电阻RV801过压保护,进入由L807、C802、C803、C804、L806等组成的进线抗干扰电路.滤除高频干扰信号后的交流电压通过VB801、C807、C808整流滤波后,得到一个300V左右的脉动直流电压.
图2、进线抗干扰、整流滤波部分图示

图3、电源输入、滤波、整流电路部分原理图示

二、待机5VS电路:
图4、5VS电压形成部分方框图示

表一 N831 STR-A6059H引脚功能

1、待机5VS的形成原理:
本机5V待机电压由N831和外围元器件组成,PFC端电压通过开关变压器T901的初级绕组1-3端加到N831的第7脚和第8脚(MOS管的D极.启动电流输入端)N831开始工作.T901各个绕组产生感应电压.4端和5端绕组感应电压经过R837限流VD832整流C835滤波后,为N831第5脚提供20V直流工作电压.20V电压另外经过待机控制信号PS-ON控制三极管V832控制光耦和V916控制后为PFC电路N810的第8脚供电.
2、5V的稳压电路:
T901次级绕组经过VD833整流,C838、L831、C839组成的T型滤波器滤波后,形成5VS电压.5V稳压电路由取样电阻R843、R842、R841及N903,光耦N832组成.当5V电压升高时,分压后的电压加到N903的R端,经内部放大后使K端电压降低,光耦N832导通增强,N831的第4脚反馈控制端电压降低,经内部
电路处理后,控制内部MOS管激励脉冲变窄,使5VS降到正常
值.

3、5V的欠压和过流保护电路:
N831的第1脚是内电路MOS管源极通过外接电阻R831接地,也是内电路的过流检测端,电流大时起到保护作用.N831的第2脚是掉电欠压检测输入端,电阻R897、R899、R823、R901组成市电电压检测电路,电阻R900和R901组成20V电压掉电检测,当负载加重或者其他原因引起20V电压下降时,电阻R900和R901的分压也随之下降,当降到电路设计的阈值时,电路保护,停止工作.

图5、稳压取样回路部分图示

图6、市电检测及20V掉电检测部分图示

图7、5V待机部分电路原理图示

三、待机控制、功率因数校正PFC电路:
图8、功率因数校正PFC部分图示

表二 N810 NCP33262引脚功能

1、PFC的形成:
本机的PFC电路由储能电感L811,PFC整流管VD812,N810(NCP33262)及其外围元件组成.当主机发出开机信号后VCC经过R815限流VZ812稳压,C814、C816滤除杂波加到N801的第8脚后,经内部电路给软启动脚第2脚外接电容充电,电平升高后PFC电路进入工作状态,将整流后的300V电压变换为整机所需380V的PFC电压.
2、PFC详细工作过程:
N810的第7脚输出斩波激励脉冲经过灌流电路加到斩波管V811、V810的G极,在激励信号的正半周激励脉冲分别经过R895、VD816、R820、VD815加到两只MOS管的G极,使V811、V810导通.在激励信号的负半周,脉冲经过R836和R821加到V805、V806的B极,V805、V806导通,MOS管的G极电压快速释放,斩波管截止.VZ814和VZ811是斩波管G极过压保护二极管.R1034、R902两只电阻的作用是在关机时泄放掉MOS管G-S间的电压.经过电阻R811、R812、
R813、R814分压得到正弦波取样电压进入到N810第3脚,用
于校正第7脚输出脉冲波形.由于此电源工作在DCM状态,储
能电感L811次级绕组11-13端感应的电压经R816和R868分压后为N810第5脚提供过零检测信号,控制PFC电路内部斩波信号的开启和关断.
2、PFC电压的稳压:
电阻R826、R827、R828、R805、R829、R830组成PFC电压取样反馈电路,分压后的取样电压送到N810的第1脚,经内部误差放大电路比较后,调整第7脚激励脉冲的输出占空比,控制斩波管的导通时间,以达到稳定PFC电压的目的.
3、PFC的过流保护:
电阻R849、RR825为PFC电路过流检测电阻.如果出现电源负载异常过重时,MOS管过大的电流流经R825、R849、R825、R849上的压降就会升高,升高的电压经过R823加到N810的第4脚,N810停止工作,起到保护作用.
4、PFC市电欠压保护:
N810的第2脚是软启动端,该脚外接三极管V804接市电欠压保护电路,当市电电压过低时,由R1028、R1032、R1026、R1030组成的市电
电压分压取样电压ER电压为低电平,V804导通,4脚电平为低
电平芯片停止工作.

图9、待机控制电路部分图示

图10、PFC取样反馈电路部分图示

图11、市电输入检测部分图示

图12、PFC电路部分电原理图示

四、100V直流形成电路:
图13、NCP1396部分图示

图14、100V、12V直流形成部分图示

220V交流经过整流滤波,进行功率因数校正后得到400V左右的直流电压送入由N802(NCP1396)组成的DC-DC变换电路.PFC电压经过R874、R875、R876、R877分压后送入N802第5脚进行欠压检测,经运算放大输出跨导电流.开机同时第12脚得到VCC1供电,软启动电路工作,内部控制器对频率、驱动定时等设置进行检测,正常后输出振荡频率.第4脚外接定时电阻R880;第2脚外接频率钳位电阻R878,电阻大小可以改变频率范围;第7脚为死区时间控制,可以从150ns到1us之间改变.第1脚外接软启动电容C855;第6脚为稳压反馈取样输入;第8脚和第9脚分别为故障检测脚.
当N802的第12脚得到供电,第5脚的欠压检测信号也正常时,N802开始正常工作.VCC1加在N802第12脚的同时,VCC1经过VD839,R885供给倍压脚第16脚,C864为倍压电容,经过倍压后的电压为195V左右.
从第11输出的低端驱动脉冲通过拉电流电阻R860送入V840的G级,VD837、R859为灌电流电路.第15脚输出的高端驱动脉冲通过拉电流电阻R857送入V839的G级,VD836、R856为灌电流电路.
当V839导通时,400V的VB电压流过V839的D-S级及T902绕组、C865形成回路,在T902绕组形成下正上负的电动势,次级绕组得到的感应电压,经过VD853、C848整流滤波后得到100V直流电压,为LED驱动电路提供工作电压.次级另一路绕组经过R835、VD838、VD854、C854、C860、整流滤波后得到12V电压给主板伴音部分提供工作电压.次级另一绕组经过VD852、C851、C852、C853整流滤波后得到12V电压.
同理,当V840导通,V839截止时,在T902初级绕组形成上正下负的感应电动势耦合给次级.由R863、R864、R865、R832、R869、N842组成的取样反馈电路通过光耦N840控制N802第6脚,使其次级输出的各路电压得到
稳定,由C866、R867组成取样补偿电路。

图15、取样反馈回路部分图示

图16、PWM电路部分电路原理图示

五、LED背光驱动电路:
LED背光驱动部分采用OZMicro公司的OZ9902方案,OZ9902为双路驱动芯片,本电路采用2片OZ9902,也就是本电路采用了4路驱动.单路驱动简易图如下:
图17、LED背光驱动电路方框图示

表三 N906 OZ9902引脚功能

图18、LED背光驱动控制部分电路原理图示

1、驱动电路升压过程:
驱动芯片OZ9902第2脚得到12V工作电压,第3脚得到高电平开启电平,第9脚得到调光高电平,第1脚欠压检测到4V以上的高电平时,OZ9902开始启动工作,从OZ9902的第23脚输出驱动脉冲,驱动V919工作在开关状态.
1、电路开始工作时,负载LED上的电压约等于输入VIN电压.
2、正半周时,V919导通,储能电感L909、L913上的电流逐渐增大,开始储能,在电感的两端形成左正右负的感应电动势.
3、负半周时,V919截止,电感两端的感应电动势变为左负右正,由于电感上的电流不能突变,与VIN叠加后通过续流二极管VD926给输出电容C900进行充电,二极管负极的电压上升到大于VIN电压.
4、正半周再次来临,V919再次导通,储能电感L909、L913重新
储能,由于二极管不能反向导通,这时负载上的电压仍然高于
VIN上的电压.正常工作以后,电路重复3、4步骤完成升压过[Page]
程.
R919、R923、R929组成电流检测网络,检测到的信号送入芯片的20脚ISW11,在芯片内部进行比较,来控制V919的导通时间.
R909、R911、R914和R924是升压电路的过压检测电阻.连接至N905的第19脚的内部基准电压比较器.当升压的驱动电压升高时,其内部电路也会切断PWM信号的输出,使升压电路停止工作.
在N905内部还有一个延时保护电路,即由N905第10脚的内部电路和外接的电容C899组成.当各路保护电路送来起控信号时,保护电路不会立即动作,而是先给C899充电.当充电电压达到保护电路的设定阈值时,才输出保护信号.从而避免出现误保护现象,也就是说只有出现持续的保护信号时,保护电路才会动作.

2、PWM调光控制电路:
调光控制电路由V920等电路组成,V920受控于7脚的PWM调光控制,当第7脚为低电平时,第18脚的PROT1也为低电平,V920不工作.当第7脚为高电平时,第18脚的PROT11信号不一定为高电平,因为假如输出端有过压或短路情形发生,内部电路会将PROT1信号拉为低电平,使LED与升压电路断开.
R920、R926、R1025组成电流检测网络,检测到的信号送入芯片的第17脚ISEN1,第17脚为内部运算放大器+输入端,检测到的ISEN1信号在芯片内部进行比较,来控制V920的工作状态.
第11脚外接补偿网络,也是传导运算放大器的输出端.此端也受PWM信号控制,当PWM调光信号为高,放大器的输出端连接补偿网络.当PWM调光信号为低时,放大器的输出端与补偿网络被切断,因此补偿网络内的电容电压一直被维持,一直到PWM调光信号再次为高电平时,补偿网络才又连接放大器
的输出端.这样可确保电路工作正常,以及获得非常良好
的PWM调光反应.
其他三路电路工作过程同上,这里不在阐述.

六、故障实例
故障现象:不定时三无
分析检修:因该机不定时出现三无现象,大部分时间可以正常工作,无规律可循,有时几天出现一次.当故障出现时,测得无5VS电压,确定故障在5V产生电路.检测5V电路,N831(STR-A6059H)检测数据如下:第1脚:0V;2脚:6.2V;3脚:0V;4脚:开机瞬间有摆动随后0V;5脚:8-10V摆动;7、8脚300V.从检测结果可知N831启动后因4脚电压降低进入保护状态锁定电路无输出.能引起4脚电压降低进入保护状态的原因只有5VS稳压控制电路和4脚外围元件.对稳压控制电路相关元件在路检测正常,因为及其大部分时间能正常工作,故从故障形成机理和统计的角度看,这类故障多与原件性能参数不良或自身特性变差有
关,怀疑4脚外接电容C832不稳定漏电所致,试更换C832长
时间试机未见异常,故障排除.
故障点实物图示

故障现象:开机一分钟后屏幕二分之一处发黑

分析检修:由于故障现象是半面亮光发黑,因此判断是一组背光驱动电路异常所致。
开机检查,测得LED4+、LED4-输出端子电压为195V,而LED3+、LED3-输出端子只有108V.从电路图中可以看出,V925和V926这组输出未能正常升压形成LED所需的电压要求.什么原因会造成此故障呢?一、未有正常的驱动信号送至V925,使V925处于截止状态而形成不了升压;二、开机瞬间已有驱动信号驱动了V925,并形成升压过程,但由于LED负载异样使反馈信号异常迫使驱动块保护而停止输出输出驱动信号,而使V925截止输出,升压停止.
为了验证这个问题,再次监测LED3+、LED3-电压时,发现其开机电压瞬间会达到300V!从欧姆定律不难看出,当负载减轻时,电流则会减小,电源此时处于空载状态,电压自然会上升.由此判断此故障是由于LED灯
组断路而使输出电压过高引起的保护.更换屏后故障排除。
实物检测点标示

❺ 我有四只6800uf,450v的电容,怎样做升压电路充电

专业解答:

1:不需要升压了,最简单就是直接用4个1N4007接成整流桥,然后接到插板上,然后输出端通过开关接到4个并联的6800uF电容上即可。

2:充电过程好燃:220V峰值电压308V,给450V电容充电刚好,那样你轨道炮威力也足够。不过6800uF有点小,建议多接几个,比如10个,那威力就大了。

3:放电的时候要链陵把220V的输入断开,用电容放电。友唤虚

❻ 自己做了一个MC34063的升压电路,感觉带负载能力很差,哪位高手能帮忙解决下!外接什么功率放大

首先要设定抄工作频率,从而决定Ct的值(频率一般取75KHz,Ct=360pF)。设定输出电流,如果大于500mA,外加扩流管,根据公式算出 Ipk,(Ipk大于1500mA的,一定要外加扩流)Rsc=0.33/Ipk, 得带限流电阻值,实际可以小以点阻值。

(6)四升压电路扩展阅读:

这是当开关断开(三极管截止)时的等效电路。当开关断开(三极管截止)时,由于电感的电流 保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。

而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电, 电容两端电压升高,此时电压已经高于输入电压了。升压完毕。

说起来升压过程就是一个电感的能量传递过程。充电时,电感吸收能量,放电时电感放出能量。如果电感量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。

❼ 求一升压电路图 4.2V升至5V 要图

可以用电荷泵升压器TPS60110,这款器件的输入电压盯弊范围是2.7V~5.4V,恒定输出+5V,最大输散亮出电流凯掘族是300mA,它最大的优点是不需要用电感,外围只需接三、四支小电容即可。见下图(在输入电压为稳定的直流电压情况下,输入电容Cin可以省掉)——

❽ 18650锂电 充电升压电路

LT1308DC-DC升压芯片可使用的原理图3.7vto5v

LT1308DC-DC升压芯片可使用的原理图(2008-12-2715:14:56)标签:原理图boost升压lt1308杂谈

LT1308是Linear公司的一款DC-DC升压芯片原理图,性能如下:

1、从单节锂离子电池提供5V持续1A电流

2、SEPIC模式下从四个镍镉电池提供5V持续0.8A电流

3、Boost频率:600kHz

4、输出电压最高达34V

5、可高负荷启动

6、低负荷下自动ModeTM模式启动(LT1308A)

7、在轻负载时可连续开关(LT1308B)

8、低压降:2A典型值300mV

9、引脚对引脚兼容升级LT1308

10、关机模式低静态电流:1mA(最大值)

11、提高低电池检测器准确度:200mV±2%

由于其凌特Datasheet中提供的典型原理图并不太完整,这里笔者画了另一个原理图,按照此原理图连接好的电子元件实物将能够直接运行。其中:SHDN是启动位,判断启动条件是电平高于1V,所以可以直接接在输入端正极上或者接在一个电位器(如下图),接在电位器上的好处就是改变输入电池(如锂电)的启动保护电平。另外,输出电流较大时,输入电容应该尽量够大,最好1000uF以上,输出电容也需够大,但不一定需大于输入电容,FeedBack电阻的分配如下图所示(5V输出时可以用309K,100K的电阻),如果309K的电阻难找,而电压不太严格的话,输出5V可以用10K,3.3K的电阻组合搭配,也可以用50K的电位器。FeedBack电位为1.22V,输出电压VOUT=1.22V(1+R1/R2)。当采用单节碱性1.5V或镍电输入,输出电压5V时,输出电流能够提供最大值为100mA左右,如果继续增大负载,输出电压将显著降低,效率较低。采用3.7V锂电池输入,输出电压5V时,输出电流最大可达1000mA左右,效率可达85%左右。

有现成的

❾ 怎么用一个小变压器和一个电容还有几个二极管自制升压电路

3V电池串开关(按钮开关)后同变压器的220端串一起。再从变压器220V线圈二端接一只二极管向0.22UF/400V的电容充电,电容二端就是310V的高压。

❿ 电容自举作用是什么

滤波作用,在电源电路中,整流电路将交流变成脉动的直流,而在整流内电路之后接容入一个较大容量的电解电容,利用其充放电特性,使整流后的脉动直流电压变成相对比较稳定的直流电压。在实际中,为了防止电路各部分供电电压因负载变化而产生变化,所以在电源的输出端及负载的电源输入端一般接有数十至数百微法的电解电容.由于大容量的电解电容一般具有一定的电感,对高频及脉冲干扰信号不能有效地滤除,故在其两端并联了一只容量为0.001--0.lpF的电容,以滤除高频及脉冲干扰。

耦合作用:在低频信号的传递与放大过程中,为防止前后两级电路的静态工作点相互影响,常采用电容藕合.为了防止信号中韵低频分量损失过大,一般总采用容量较大的电解电容。

阅读全文

与四升压电路相关的资料

热点内容
老山家电维修怎么样 浏览:268
北京昆仑手表维修服务电话 浏览:452
《唐砖精校版》txt 浏览:703
tcl空调售后安装电话是多少钱 浏览:885
四个小孩四大天王电影 浏览:239
广州比较好的家电品牌有哪些 浏览:486
小家电的政策有哪些 浏览:676
沐风之女迅雷链接 浏览:290
外国的哪些家电涌入中国 浏览:364
电视版app小电影 浏览:822
多人运互换床戏电影推荐 浏览:584
弱电售后服务及培训计划 浏览:490
sbs防水卷材手工多少钱一平方 浏览:548
天府新区国家电网有限公司怎么样 浏览:296
三星冰箱售后维修最佳名家快修 浏览:176
森茂源家具 浏览:6
76家居 浏览:635
506070年代的老电影名字 浏览:911
山东国家电网的待遇怎么样 浏览:337
福州长菱空气能售后维修 浏览:113