㈠ 逻辑门电路的工作情况
CMOS反相器在电容负载情况下,它的开通时间与关闭时间是相等的,这是因为电路具有互补对称的性质。下图表示当vI=0V时,TN截止,TP导通,由VDD通过TP向负载电容CL充电的情况。由于CMOS反相器中,两管的gm值均设计得较大,其导通电阻较小,充电回路的时间常数较小。类似地,亦可分析电容CL的放电过程。CMOS反相器的平均传输延迟时间约为10ns。
双极型门电路
TTL是transistor-transistorlogic的缩写,就是晶体管到晶体管逻辑电路的意思。COMS是MOS管的,TTL就是晶体管的。TTL门电路是双极型集成电路,与分立元件相比,具有速度快、可靠性高和微型化等优点,分立元件电路已被集成电路替代。二极管构成的与门和或门。由于实际的二极管并不是理想的,正向导通时存在压降(硅管均为0.7V),所以低电平信号经过一级与门后,其电平将升高0.7V;高电平信号每经过一级或门其电平将下降0.7V。也就是说由二极管构成的与门和或门均不能用以构成实用的逻辑电路。为克服二极管门电路的上述缺点,可采用具有反相放大特性的三极管来构成门电路,即TTL门电路。LSTTL与非门电路:该电路可以看作由二极管D1、D2构成的与门、三极管T2构成的非门及用三极管T3、T4取代R3′,T2的BE结取代RB的改进型与非门的组合。1、LSTTL门电路的静态特性:(1)LSTTL门电路的静态输入特性、(2)LSTTL门电路的静态输出特性、LSTTL电路中的74LS125芯片有如图所示三态输出方式:0、1和高电阻。三态电路特别适合于总线结构系统和外围电路,也适用于数字控制设备,数字仪表中一般逻辑电路间的连接。(3)LSTTL门电路的电压传输特性、(4)LSTTL门电路的抗干扰特性――噪声容限UNLSTTL门电路的输入低电平噪声容限VNL=0.5V,输入高电平噪声容限VNH=0.3V。2、LSTTL门电路的动态特性:(1)LSTTL门电路的平均传输延迟时间
TP,由于二极管和三极管由导通到截止或者由截止到导通都需要时间,且受到电路中的寄生电容和负载电容等的影响,电路的输出波形总是滞后于输入波形。(2)LSTTL门电路的动态尖峰电流,在电源电流脉冲的边沿(主要是下降沿)产生了尖峰,这就是动态尖峰电流。3、LSTTL门电路的温度特性:温度变化对LSTTL门电路电气性能的影响比对CMOS门电路影响大得多,主要是:
1、输入高电平通过图2.30中D1、D2的漏电流I1H随温度升高而增大。OC门输出高电平或输出高电阻状态的漏电流IOZ会增大,电路的输出驱动能力将下降。2、输出高电平VOHP随温度降低而降低。其原因是VOH=VCC-2VBE,温度降低导致VBE增大,故VOH减小。根据噪声容限的概念,VOH的减小则系统的抗干扰能力降低。3、LSTTL门电路的阈值电压VT主要取决于VD和VBE1,于是VT随着温度的升高而下降。因温度每升高1℃,则PN结压降低减小2mV,所以当温度从-55℃上升到+125℃时,VT将下降300mV以上。
普通的TTL门电路和其他类型的双极型集成门电路:
1、普通TTL门电路:①将LSTTL门电路74LS00中的肖特基三极管换成普通三极管,将肖特基二极管换成普通二极管,将输入端的二极管与门换成多射极晶体管输与门,普通TTL与非门电路。②三3输入与非门7410的工作状态表。2、ECL门电路(1)“发射极耦合逻辑”门电路,简称为ECL门电路,是一种非饱和型的高速逻辑电路。(2)ECL或/或非门的电压传输特性。(3)ECL电路与TTL电路相比较优点主要表现在:①由于输出端采用射极输出结构,故输出电阻很低,带负载能很强。例如国产CE10K系列门电路能驱动同类门电路数目达90个以上。②工作速度最快。③ECL电路可以直接将输出端并联以实现“线或”的逻辑功能,同时有、互补的输出端,使用非常方便。④由于T1~T5管的ic几乎相等,故电路开关过程中电源电流几乎没有变化,电路内部的开关噪声很小。缺点主要表现在:①功耗大。②抗干扰能力差,即噪声容限低,因为ECL电路的逻辑摆幅仅0.8V,直流噪声容限仅200mV左右。③输出电平的稳定性较差。3、I2L电路:(1)集成注入逻辑”门电路,简称I2L电路,它具有结构简单,功耗低的优点,特别适合制成大规模集成电路。(2)I2L电路的多集电极输出结构在构成复杂逻辑电路时十分方便。(3)I2L门电路与TTL门电路的比较
I2L电路的优点主要表现在:①I2L电路能在低电压、微电流下工作。②I2L门电路结构简单。③各逻辑单元之间不需要隔离。I2L电路的缺点主要表现在:①开关速度慢。②抗干扰能力差。
BicMOS门电路 双极型CMOS或BiCMOS的特点在于,利用了双极型器件的速度快和MOSFET的功耗低两方面的优势,因而这种逻辑门电路受到用户的重视。
BiCMOS反相器
右图表示基本的BiCMOS反相器电路,为了清楚起见,MOSFET用符号M表示BJT用T表示。T1和T2构成推拉式输出级。而Mp、MN、M1、M2所组成的输入级与基本的CMOS反相器很相似。输入信号vI同时作用于MP和MN的栅极。当vI为高电压时MN导通而MP截止;而当vI为低电压时,情况则相反,Mp导通,MN截止。当输出端接有同类BiCMOS门电路时,输出级能提供足够大的电流为电容性负载充电。同理,已充电的电容负载也能迅速地通过T2放电。上述电路中T1和T2的基区存储电荷亦可通过M1和M2释放,以加快电路的开关速度。当vI为高电压时M1导通,T1基区的存储电荷迅速消散。这种作用与TTL门电路的输入级中T1类似。同理,当vI为低电压时,电源电压VDD通过MP以激励M2使M2导通,显然T2基区的存储电荷通过M2而消散。可见,门电路的开关速度可得到改善。
BiCMOS门电路
根据前述的CMOS门电路的结构和工作原理,同样可以用BiCMOS技术实现或非门和与非门。如果要实现或非逻辑关系,输入信号用来驱动并联的N沟道MOSFET,而P沟道MOSFET则彼此串联。正如下图所示的2输入端或非门。当A和B均为低电平时,则两个MOSFETMPA和MPB均导通,T1导通而MNA和MNB均截止,输出L为高电平。与此同时,M1通过MPA和MpB被VDD所激励,从而为T2的基区存储电荷提供一条释放通路。另一方面,当两输入端A和B中之一为高电平时,则MpA和MpB的通路被断开,并且MNA或MNB导通,将使输出端为低电平。同时,M1A或M1B为T1的基极存储电荷提供一条释放道路。因此,只要有一个输入端接高电平,输出即为低电平。
㈡ 双极型集成电路的简介
以通常的NPN或PNP型双极型晶体管为基础的单片集成电路。它是1958年世界上最早制成的集成电路。双极型集成电路主要以硅材料为衬底,在平面工艺基础上采用埋层工艺和隔离技术,以双极型晶体管为基础元件。按功能可分为数字集成电路和模拟集成电路两类。在数字集成电路的发展过程中,曾出现了多种不同类型的电路形式,典型的双极型数字集成电路主要有晶体管-晶体管逻辑电路(TTL),发射极耦合逻辑电路(ECL),集成注入逻辑电路(I2L)。TTL电路形式发展较早,工艺比较成熟。ECL电路速度快,但功耗大。I2L电路速度较慢,但集成密度高。
同金属-氧化物-半导体集成电路相比,双极型集成电路速度快,广泛地应用于模拟集成电路和数字集成电路。
双极型集成电路是最早制成集成化的电路,出现于1958年。双极型集成电路主要以硅材料为衬底,在平面工艺基础上采用埋层工艺和隔离技术,以双极型晶体管为基础元件。它包括数字集成电路和线性集成电路两类。
㈢ 计算机逻辑电路中,与或门,或非门,异或非门,异或门的性质,在线等!!!!
性质如下:
“门”是这样的一种电路:它规定各个输入信号之间满足某种逻辑关系时,才有信号输出,通常有下列三种门电路:与门、或门、非门(反相器)。从逻辑关系看,门电路的输入端或输出端只有两种状态,无信号以“0”表示,有信号以“1”表示。
也可以这样规定:低电平为“0”,高电平为“1”,称为正逻辑。反之,如果规定高电平为“0”,低电平为“1”称为负逻辑,然而,高与低是相对的,所以在实际电路中要选说明采用什么逻辑,才有实际意义。
例如,负与门对“1”来说,具有“与”的关系,但对“0”来说,却有“或”的关系,即负与门也就是正或门;同理,负或门对“1”来说,具有“或”的关系,但对“0”来说具有“与”的关系,即负或门也就是正与门。
基本的逻辑电路:凡是对脉冲通路上的脉冲起着开关作用的电子线路就叫做门电路,是基本的逻辑电路。门电路可以有一个或多个输入端,但只有一个输出端。门电路的各输入端所加的脉冲信号只有满足一定的条件时,“门”才打开,即才有脉冲信号输出。
从逻辑学上讲,输入端满足一定的条件是“原因”,有信号输出是“结果”,门电路的作用是实现某种因果关系──逻辑关系。所以门电路是一种逻辑电路。基本的逻辑关系有三种:与逻辑、或逻辑、非逻辑。与此相对应,基本的门电路有与门、或门、非门。
与门电路真值表:A B 结果0 0 0、0 1 0 、1 0 0、1 1 1。
或门电路真值表:A B 结果0 0 0、 0 1 1 、1 0 1、1 1 1。
非门电路真值表:A 结果0 1、1 0。
基本逻辑关系为“与”、“或”、“非”三种。逻辑门电路按其内部有源器件的不同可以分为三大类。第一类为双极型晶体管逻辑门电路,包括TTL、ECL电路和I2L电路等几种类型。
第二类为单极型MOS逻辑门电路,包括NMOS、PMOS、LDMOS、VDMOS、VVMOS、IGT等几种类型;第三类则是二者的组合BICMOS门电路。常用的是CMOS逻辑门电路。
㈣ 集成电路各元件介绍
双极型集成电路
bipolar integrated circuit
以通常的NPN或PNP型双极型晶体管为基础的单片集成电路。它是1958年世界上最早制成的集成电路。双极型集成电路主要以硅材料为衬底,在平面工艺基础上采用埋层工艺和隔离技术,以双极型晶体管为基础元件。按功能可分为数字集成电路和模拟集成电路两类。在数字集成电路的发展过程中,曾出现了多种不同类型的电路形式,典型的双极型数字集成电路主要有晶体管-晶体管逻辑电路(TTL),发射极耦合逻辑电路(ECL),集成注入逻辑电路(I2L)。TTL电路形式发展较早,工艺比较成熟。ECL电路速度快,但功耗大。I2L电路速度较慢,但集成密度高。
同金属-氧化物-半导体集成电路相比,双极型集成电路速度快,广泛地应用于模拟集成电路和数字集成电路。
在半导体内,多数载流子和少数载流子两种极性的载流子(空穴和电子)都参与有源元件的导电,如通常的NPN或PNP双极型晶体管。以这类晶体管为基础的单片集成电路,称为双极型集成电路。
双极型集成电路是最早制成集成化的电路,出现于1958年。双极型集成电路主要以硅材料为衬底,在平面工艺基础上采用埋层工艺和隔离技术,以双极型晶体管为基础元件。它包括数字集成电路和线性集成电路两类。
发展简况 双极型集成电路是在硅平面晶体管的基础上发展起来的,最早的是双极型数字逻辑集成电路。在数字逻辑集成电路的发展过程中,曾出现过多种不同类型的电路形式。常见的双极型集成电路可分类如下。
DCTL电路是第一种双极型数字逻辑集成电路,因存在严重的“抢电流”问题(见电阻-晶体管逻辑电路)而不实用。RTL电路是第一种有实用价值的双极型集成电路。早期的数字逻辑系统曾采用过 RTL电路,后因基极输入回路上有电阻存在,限制了开关速度。此外,RTL逻辑电路的抗干扰的性能较差,使用时负载又不能多,因而被淘汰。电阻-电容-晶体管逻辑电路(RCTL)是为了改善RTL电路的开关速度而提出来的,即在RTL电路的电阻上并接电容。实际上 RCTL电路也未得到发展。DTL电路是继 RTL电路之后为提高逻辑电路抗干扰能力而提出来的。DTL电路在线路上采用了电平位移二极管,抗干扰能力可用电平位移二极管的个数来调节。常用的 DTL电路的电平位移二极管,是用两个硅二极管串接而成,其抗干扰能力可提高到1.4伏左右(见二极管-晶体管逻辑电路)。HTL电路是在 DTL电路的基础上派生出来的。HTL电路采用反接的齐纳二极管代替DTL电路的电平位移二极管,使电路的阈值提高到约7.4伏左右(见高阈值逻辑电路)。可变阈值逻辑电路(VTL)也是DTL电路系列中的另一种变形电路。阈值逻辑电路(TLC)是 HTL和VTL逻辑电路的总称。TTL逻辑电路是在DTL逻辑电路基础上演变而来,于1962年研制成功。为了提高开关速度和降低电路功耗,TTL电路在线路结构上经历了三代电路形式的改进(见晶体管-晶体管逻辑电路)。
以上均属饱和型电路。在进一步探索提高饱和型电路开关速度的同时,发现晶体管多余载流子的存储效应是一个极重要的障碍。存储现象实质上是电路在开关转换过程中由多余载流子所引起。要提高电路开关速度,除了减少晶体管PN结电容,或者设法缩短多余载流子的寿命以外,就得减少和消除晶体管内载流子存储现象。60年代末和70年代初,人们开始在集成电路中利用熟知的肖特基效应。在TTL电路上制备肖特基势垒二极管,把它并接在原有晶体管的基极和集电极上,使晶体管开关时间缩短到1纳秒左右;带肖特基势垒二极管箝位的TTL门电路的平均传输延迟时间达2~4纳秒。
肖特基势垒二极管-晶体管-晶体管逻辑电路(STTL)属于第三代 TTL电路。它在线路上采用了肖特基势垒二极管箝位方法,使晶体管处于临界饱和状态,从而消除和避免了载流子存储效应。与此同时,在TTL电路与非门输出级倒相器的基极引入晶体管分流器,可以改善与非门特性。三极管带有肖特基势垒二极管,可避免进入饱和区,具有高速性能;输出管加上分流器,可保持输出级倒相的抗饱和程度。这类双极型集成电路,已不再属于饱和型集成电路,而属于另一类开关速度快得多的抗饱和型集成电路。
发射极耦合逻辑电路(ECL)是电流型逻辑电路(CML)。这是一种电流开关电路, 电路的晶体管工作在非饱和状态,电路的开关速度比通常TTL电路又快几倍。ECL逻辑电路把电路开关速度提高到 1纳秒左右,大大超过 TTL和STTL电路。ECL电路的出现,使双极型集成电路进入超高速电路范围。
集成注入逻辑电路 (I2L)又称合并晶体管逻辑电路(MTL),是70年代研制成的。在双极型集成电路中,I2L电路的集成密度是最高的。
三层结构逻辑电路(3TL)是1976年中国在I2L电路的基础上改进而成,因有三层结构而得名。3TL逻辑电路采用NPN管为电流源,输出管采用金属做集电极(PNM),不同于I2L结构。
多元逻辑电路(DYL)和双层逻辑电路(DLL),是1978年中国研制成功的新型逻辑电路。DYL逻辑电路线性与或门,能同时实现开关逻辑和线性逻辑处理功能。DLL电路是通过ECL和TTL逻辑电路双信息内部变换来实现电路逻辑功能的。
此外,在双极型集成电路发展过程中,还有许多其他型式的电路。例如,发射极功能逻辑电路(EFL)、互补晶体管逻辑电路(CTL)、抗辐照互补恒流逻辑电路(C3L)、电流参差逻辑电路(CHL)、三态逻辑电路(TSL)和非阈值逻辑电路(NTL)等。
特点和原理 双极型集成电路的制造工艺,是在平面工艺基础上发展起来的。与制造单个双极型晶体管的平面工艺相比,具有若干工艺上的特点。
①双极型集成电路中各元件之间需要进行电隔离。集成电路的制造,先是把硅片划分成一定数目的相互隔离的隔离区;然后在各隔离区内制作晶体管和电阻等元件。在常规工艺中大多采用PN结隔离,即用反向PN结达到元件之间相互绝缘的目的。除PN结隔离以外,有时也采用介质隔离或两者混合隔离法(见隔离技术)。
②双极型集成电路中需要增添隐埋层。通常,双极型集成电路中晶体管的集电极,必须从底层向上引出连接点,因而增加了集电极串连电阻,这不利于电路性能。为了减小集电极串连电阻,制作晶体管时在集电极下边先扩散一层隐埋层,为集电极提供电流低阻通道和减小集电极的串联电阻。隐埋层,简称埋层,是隐埋在硅片体内的高掺杂低电阻区。埋层在制作集成电路之前预先“埋置”在晶片体内。其工艺过程是:在 P型硅片上,在预计制作集电极的正下方某一区域里先扩散一层高浓度施主杂质即N+区;而后在其上再外延生长一层N型硅单晶层。于是,N型外延层将N+区隐埋在下面,再在这一外延层上制作晶体管。
③双极型集成电路通常采用扩散电阻。电路中按电阻阻值大小选择制备电阻的工艺,大多数是利用晶体管基区P型扩散的同时,制作每方约 150~200欧·厘米的P型扩散电阻。但是,扩散电阻存在阻值误差大、温度系数高和有寄生效应等缺点。除采用扩散电阻外,有时也采用硅单晶体电阻。
④双极型集成电路元件间需要互连线,通常为金属铝薄层互连线。单层互连布线时难以避免交叉的位置,必要时可采用浓磷扩散低阻区,简称磷桥连接法。
⑤双极型集成电路存在寄生效应。双极型集成电路的纵向NPN晶体管,比分立晶体管多一个P型衬底层和一个PN结。它是三结四层结构。增加的衬底层是所有元件的公共衬底,增加的一个PN结是隔离结(包括衬底结)。双极型集成电路因是三结四层结构而会产生特有的寄生效应:无源寄生效应、扩散电阻的寄生电容和有源寄生效应。隔离电容是集电极N型区与隔离槽或衬底P型区形成的PN结产生的电容。隔离和衬底接最低电位,所以这个电容就是集电极对地的寄生电容。扩散电阻的寄生电容是扩散电阻P型区与集电极外延层N型区产生的PN结电容,也属无源寄生效应。这一PN结电容总是处于反偏置工作状态。有源寄生效应即 PNP寄生晶体管。在电路中,NPN晶体管的基区、集电区(外延层)和衬底构成PNP寄生晶体管。在通常情况下,因PN结隔离,外延层和衬底之间总是反向偏置。只有当电路工作时,NPN管的集电结正偏,寄生PNP管才进入有源区。
工艺制备 (见彩图)是利用PN结隔离技术制备双极型集成电路倒相器的工艺流程,图中包括一个NPN晶体管和一个负载电阻R。原始材料是直径为75~150毫米掺P型杂质的硅单晶棒,电阻率ρ=10欧·厘米左右。其工艺流程是:先经过切片、研磨和抛光等工艺(是硅片制备工艺)制备成厚度约300~500微米的圆形硅片作为衬底,然后进行外延生长、氧化、光刻、扩散、蒸发、压焊和多次硅片清洗,最后进行表面钝化和成品封装。
制作双极型集成电路芯片需要经过 5次氧化,对氧化硅 (SiO2)薄层进行5次光刻,刻蚀出供扩散掺杂用的图形窗口。最后还经过两次光刻,刻蚀出金属铝互连布线和钝化后用于压焊点的窗口。因此,整套双极型集成电路掩模版共有 7块。即使通常省去钝化工艺,也需要进行6次光刻,需要6块掩模版。
㈤ 集成电路包括哪些元件
集成电路又包括SOP、SOJ、PLCC、LCCC、QFP、BGA、CSP、FC、MCM等。举例如下:1、连接件(Interconnect):提供机械与电气连接/断开,由连接插头和插座组成,将电缆、支架、机箱或其它PCB与PCB连接起来;可是与板的实际连接必须是通过表面贴装型接触k。2、a有源电子元件(Active):在模拟或数字电路中,可以自己控制电压和电流,以产生增益或开关作用,即对施加信号有反应,可以改变自己的基本特性。b无源电子元件(Inactive):当施以电信号时不改变本身特性,即提供简单的、可重复的反应。3、异型电子元件(Odd-form):其几何形状因素是奇特的,但不必是独特的。因此必须用手工贴装,其外壳(与其基本功能成对比)形状是不标准的例如:许多变压器、混合电路结构、风扇、机械开关块等。
㈥ 双极型集成电路的发展简况
双极型集成电路是在硅平面晶体管的基础上发展起来的,最早的是双极型数字逻辑集成电路。在数字逻辑集成电路的发展过程中,曾出现过多种不同类型的电路形式。常见的双极型集成电路可分类如下。
DCTL电路是第一种双极型数字逻辑集成电路,因存在严重的“抢电流”问题(见电阻-晶体管逻辑电路)而不实用。RTL电路是第一种有实用价值的双极型集成电路。早期的数字逻辑系统曾采用过 RTL电路,后因基极输入回路上有电阻存在,限制了开关速度。此外,RTL逻辑电路的抗干扰的性能较差,使用时负载又不能多,因而被淘汰。电阻-电容-晶体管逻辑电路(RCTL)是为了改善RTL电路的开关速度而提出来的,即在RTL电路的电阻上并接电容。实际上 RCTL电路也未得到发展。DTL电路是继 RTL电路之后为提高逻辑电路抗干扰能力而提出来的。DTL电路在线路上采用了电平位移二极管,抗干扰能力可用电平位移二极管的个数来调节。常用的 DTL电路的电平位移二极管,是用两个硅二极管串接而成,其抗干扰能力可提高到1.4伏左右(见二极管-晶体管逻辑电路)。HTL电路是在 DTL电路的基础上派生出来的。HTL电路采用反接的齐纳二极管代替DTL电路的电平位移二极管,使电路的阈值提高到约7.4伏左右(见高阈值逻辑电路)。可变阈值逻辑电路(VTL)也是DTL电路系列中的另一种变形电路。阈值逻辑电路(TLC)是 HTL和VTL逻辑电路的总称。TTL逻辑电路是在DTL逻辑电路基础上演变而来,于1962年研制成功。为了提高开关速度和降低电路功耗,TTL电路在线路结构上经历了三代电路形式的改进(见晶体管-晶体管逻辑电路)。
以上均属饱和型电路。在进一步探索提高饱和型电路开关速度的同时,发现晶体管多余载流子的存储效应是一个极重要的障碍。存储现象实质上是电路在开关转换过程中由多余载流子所引起。要提高电路开关速度,除了减少晶体管PN结电容,或者设法缩短多余载流子的寿命以外,就得减少和消除晶体管内载流子存储现象。60年代末和70年代初,人们开始在集成电路中利用熟知的肖特基效应。在TTL电路上制备肖特基势垒二极管,把它并接在原有晶体管的基极和集电极上,使晶体管开关时间缩短到1纳秒左右;带肖特基势垒二极管箝位的TTL门电路的平均传输延迟时间达2~4纳秒。
肖特基势垒二极管-晶体管-晶体管逻辑电路(STTL)属于第三代 TTL电路。它在线路上采用了肖特基势垒二极管箝位方法,使晶体管处于临界饱和状态,从而消除和避免了载流子存储效应。与此同时,在TTL电路与非门输出级倒相器的基极引入晶体管分流器,可以改善与非门特性。三极管带有肖特基势垒二极管,可避免进入饱和区,具有高速性能;输出管加上分流器,可保持输出级倒相的抗饱和程度。这类双极型集成电路,已不再属于饱和型集成电路,而属于另一类开关速度快得多的抗饱和型集成电路。
发射极耦合逻辑电路(ECL)是电流型逻辑电路(CML)。这是一种电流开关电路,电路的晶体管工作在非饱和状态,电路的开关速度比通常TTL电路又快几倍。ECL逻辑电路把电路开关速度提高到 1纳秒左右,大大超过 TTL和STTL电路。ECL电路的出现,使双极型集成电路进入超高速电路范围。
集成注入逻辑电路 (I2L)又称合并晶体管逻辑电路(MTL),是70年代研制成的。在双极型集成电路中,I2L电路的集成密度是最高的。
三层结构逻辑电路(3TL)是1976年中国在I2L电路的基础上改进而成,因有三层结构而得名。3TL逻辑电路采用NPN管为电流源,输出管采用金属做集电极(PNM),不同于I2L结构。
多元逻辑电路(DYL)和双层逻辑电路(DLL),是1978年中国研制成功的新型逻辑电路。DYL逻辑电路线性与或门,能同时实现开关逻辑和线性逻辑处理功能。DLL电路是通过ECL和TTL逻辑电路双信息内部变换来实现电路逻辑功能的。
此外,在双极型集成电路发展过程中,还有许多其他型式的电路。例如,发射极功能逻辑电路(EFL)、互补晶体管逻辑电路(CTL)、抗辐照互补恒流逻辑电路(C3L)、电流参差逻辑电路(CHL)、三态逻辑电路(TSL)和非阈值逻辑电路(NTL)等。