1. 文氏桥振荡器的振荡原理是什么
文氏桥振荡器的电路原理图如下:
从电路构成看,电路由两个“桥臂”构成,R1、RF构成负反馈桥臂,并联RC网络和串联RC网络再串联构成正反馈桥臂。也就是说,文氏桥振荡器既有正反馈,又有负反馈。
频率无穷低时,即f趋于0时,f0/f趋于无穷大,总增益趋于零。
频率无穷高时,即f趋于∞时,f/f0趋于无穷大,总增益趋于零。
(1)文氏电路扩展阅读:
以RC串并联网络为选频网络和正反馈网络、并引入电压串联负反馈,两个网络构成桥路,一对顶点作为输出电压,一对顶点作为放大电路的净输入电压,就构成文氏桥振荡器。
文氏桥振荡电路由两部分组成:即选频网络和放大电路。 由集成运放组成的电压串联负反馈放大电路,取其输入电阻高、输出电阻低的特点。
由Z1、Z2组成,同时兼作正反馈网络,称为RC串并联网络。由右图可知,Z1、Z2和Rf、R3正好构成一个电桥的四个臂,电桥的对角线顶点接到放大电路的两个输入端。
由于Z1、Z2和R3、Rf正好形成一个四臂电桥,电桥的对角线顶点接到放大电路的两个输入端,因此这种振荡电路常称为RC桥式振荡电路。
假如某原因使振荡输出Uo增大,Rf上的电流增大而温度升高,阻值Rf减小,使负反馈增强,放大器的增益下降,从而起到稳幅的作用。
2. 文氏电桥的工作原理
文氏桥振荡电路由两部分组成:即放大电路和选频网络。 由集成运放组成的电压串联负反馈放大电路,取其输入电阻高、输出电阻低的特点。
由Z1、Z2组成,同时兼作正反馈网络,称为RC串并联网络。由右图可知,Z1、Z2和Rf、R3正好构成一个电桥的四个臂,电桥的对角线顶点接到放大电路的两个输入端。
由于Z1、Z2和R3、Rf正好形成一个四臂电桥,电桥的对角线顶点接到放大电路的两个输入端,因此这种振荡电路常称为RC桥式振荡电路。 为克服RC移相振荡器的缺点,常采用RC串并联电路作为选频反馈网络的正弦振荡电路,也称为文氏电桥振荡电路,如图Z0820所示。它由两级共射电路构成的同相放大器和RC串并联反馈网络组成。由于φA=0,这就要求RC串并联反馈网络对某一频率的相移φF=2nπ,才能满足振荡的相位平衡条件。下面分析RC串并联网络的选频特性,再介绍其它有关元件的作用。
图1:RC串并联选频网络振荡器
图1中RC串并联网络在低、高频时的等效电路如图1所示。这是因为在频率比较低的情况下,(1/ωC)>R,而频率较高的情况下,则(1/ωC)<R,前者等效于一节超前型移相电路,后者等效于一节滞后型移相电路。显然频率从低到高连续变化,相移从90°到-90°连续变化,其中必存在一个中间频率f0,使RC串并联网络的相移为零。于是满足相位平衡条件。对此,可进一步作定量分析,由图1得:
图2
为调节频率方便,通常取R1=R2=R,C1=C2=C,如果令ω0=1/RC,则上式简化为:
图3
可见,RC串并联反馈网络的反馈系数是频率的函数。由式GS0821可画出的幅频和相频特性,如图Z0822所示。由图可以看出:
图4
这就表明RC串并联网络具有选频特性。因此图Z0820电路满足振荡的相位平衡条件。如果同时满足振荡的幅度平衡条件,就可产生自激振荡。
一般两级阻容耦合放大器的电压增益Au远大于3,如果利用晶体管的非线性兼作稳幅环节,放大器件的工作范围将超出线性区,使振荡波形产生严重失真。为了改善振荡波形,实用电路中常引进负反馈作稳幅环节。图1中电阻Rf和Re引入电压串联深度负反馈。这不仅使波形改善、稳定性提高,还使电路的输入电阻增加和输出电阻减小,同时减小了放大电路对选频网络的影响,增强了振荡电路的负载能力。通常Rf用负温度系数的热敏电阻(Rt)代替,能自动稳定增益。假如某原因使振荡输出Uo增大,Rf上的电流增大而温度升高,阻值Rf减小,使负反馈增强,放大器的增益下降,从而起到稳幅的作用。从图1可以看出,RC串并联网络和Rf、Re,正好组成四臂电桥,放大电路输入端和输出端分别接到电桥的两对角线上,因此称为文氏电桥振荡器。目前广泛采用集成运算放大器代替图1中的两级放大电路来构成RC桥式振荡器。图5是它的基本电路。文氏电桥振荡器的优点是:不仅振荡较稳定,波形良好,而且振荡频率在较宽的范围内能方便地连续调节。
3. 文氏桥振荡电路的正反馈之路由什么组成
文氏桥振荡器的电路原理图如下:
从电路构成看,电路由两个“桥臂”构成,R1、RF构成负反馈桥臂,并联RC网络和串联RC网络再串联构成正反馈桥臂。也就是说,文氏桥振荡器既有正反馈,又有负反馈。
我们知道,正反馈电路是不稳定系统,那么,整个电路到底表现为正反馈,还是负反馈呢?这要取决于正反馈和负反馈哪个占“上风”!
负反馈增益为A1=1+RF/R1
正反馈增益A2(jf)=1/(3+j(f/f0-f0/f))
总增益A(jf)=A1*A2(jf)=(1+RF/R1)/(3+j(f/f0-f0/f))
上式中f0=1/2πRC,先定性分析:
频率无穷低时,即f趋于0时,f0/f趋于无穷大,总增益趋于零。
频率无穷高时,即f趋于∞时,f/f0趋于无穷大,总增益趋于零。
直观判断,是一个带通网络,事实上,的确如此,并且增益的峰值出现在f=f0
此时A(jf)=(1+RF/R1)/3
即:A(jf)是实数,也就是说,频率为f0的信号经过环路一周后,其相移为0°。
RF/R1的值不同时,电路出现下述三种情况:
a、A<1时,假如电路有一个扰动,扰动每经过环路一次,信号被衰减,负反馈占“上风”,电路是稳定系统,最终扰动趋于零。
b、A>1时,假如电路有一个扰动,扰动每经过环路一次,信号被放大,正反馈占“上风”,电路是不稳定系统,出现幅度不断增大的振荡。
c、A=1时,负反馈与正反馈“旗鼓相当”,电路为中性的稳定状态,出现扰动时,频率为f0的信号分量维持原有大小,无限的持续下去。
显然,上述电路还会有问题,首先,实际不可能做到A=1,其次,振荡器的输出幅值不可控。为此,最好是开始时,振荡幅值足够大之前,A>1,振荡幅值达到预定的幅值之后,A=1,显然,这样的电路,需要加入一些非线性环节。
下述电路就是这样的电路:
4. 做的一个文氏振荡电路,怎么改变频率啊,急
串在R1或R2上均可以改变震荡频率。
若想改变RC文氏电桥振荡器电路中的振荡频率,需调整电路中的运放“+”端接的两个电阻R1,R2,或者改变电路中两个电容C1,C2。
如图,文氏电桥振荡器的振荡频率为f=[2π√(R1R2C1C2)]^(-1)
所以,改变R1, R2,C1,C2使得四个量的乘积变化,就可以改变频率。
5. rc文氏电桥振荡电路在低频信号发生器中的作用是什么
rc文氏电桥振荡电路在低频信号发生器用于频率固定、稳定性要求不高的地方。文氏电桥振荡器的优点是稳定度高,非线性失真小,正弦波形好。在低频信号发生器中获得了广泛的应用。