A. multisim中8位双积分ad转换器转换控制信号的电路怎么连,8位双积分ad转换器的原理全图,很急
multisim里面都没有见过双积分adc
B. 请老师提供点双积分式数字直流电压表(非A/ D转换器)的资料吧!急用!!!!!!!谢谢
1.转换方式
V-T型间接转换ADC。
2. 电路结构
图11.11.1是这种转换器的原理电路,它由积分器(由集成运放A组成)、过零比较器(C)、时钟脉冲控制门(G)和计数器(FF0~FFn)等几部分组成。
图11.11.1 双积分A/D转换器
(1)积分器
积分器是转换器的核心部分,它的输入端所接开关S1由定时信号Qn控制。当Qn为不同电平时,极性相反的输入电压vI和参考电压 VREF将分别加到积分器的输入端,进行两次方向相反的积分,积分时间常数τ=RC。
(2)过零比较器
过零比较器用来确定积分器的输出电压v0过零的时刻。当v0≥0时,比较器输出vC为低电平;当v0<0时,vC为高电平。比较器的输出信号接至时钟控制门(G)作为关门和开门信号。
(3)计数器和定时器
它由n+1个接成计数器的触发器FF0~FFn-1串联组成。触发器FF0~FFn-1组成n级计数器,对输入时钟脉冲CP计数,以便把与输入电压平均值成正比的时间间隔转变成数字信号输出。当计数到2n个时钟脉冲时,FF0~FFn-1均回到0态,而FFn翻转到1态,Qn=1后开关 S1从位置A转接到B。
(4)时钟脉冲控制门
时钟脉冲源标准周期Tc,作为测量时间间隔的标准时间。当vC=1时,门打开,时钟脉冲通过门加到触发器FF0的输入端。
3.工作原理
双积分ADC的基本原理是对输入模拟电压和参考电压分别进行两次积分,将输入电压平均值变成与之成正比的时间间隔,然后利用时钟脉冲和计数器测出此时间间隔,进而得到相应的数字量输出。由于该转换电路是对输入电压的平均值进行变换,所以它具有很强的抗工频干扰能力,在数字测量中得到广泛应用。
下面以输入正极性的直流电压vI为例,说明电路将模拟电压转换为数字量的基本原理。电路工作过程分为以下几个阶段进行,图中 各处的工作波形如图11.11.2所示。
(1) 准备阶段 首先控制电路提供CR信号使计数器清零,同时使开关S2闭合,待积分电容放电完毕后,再使S2断开。 (2) 第一次积分阶段 在转换过程开始时(t=0),开关S1与A端接通,正的输入电压vI加到积分器的输入端。积分器从0V开始对vI积分,其波形如图11.11.2斜线O-VP段所示。 根据积分器的原理可得 (其中τ=RC) 由于vO<0,过零比较器输出为高电平,时钟控制门G被打开。于是,计数器在CP作用下从0开始计数。经2n个时钟脉冲后,触发器FF0~FFn-1 都翻转到0态,而Qn=1,开关S1由A点转接到B点,第一次积分结束,第一次积分时间为t=T1=2nTc 令VI为输入电压在T1时间间隔内的平均值, 则由式 可得第一次积分结束时积分器的输出电压为Vp 图11.11.2双积分A/D转换器各处工作波形
(3) 第二积分阶段
当t=t1时,S1转接到B点,具有与vI相反极性的基准电压-VREF加到积分器的输入端;积分器开始向相反方向进行第二次积分;当t=t2时,积分器输出电压v0≥0,比较器输出vC=0,时钟脉冲控制门G被关闭,计数停止。在此阶段结束时v0的表达式可写为
设T2=t2-t1,于是有 设在此期间计数器所累计的时钟脉冲个数为λ,则 T2=λTc
可见,T2与V1成正比,T2就是双计分A/D转换过程中的中间变量。
上式表明,在计数器中所得的数λ(λ=Qn-1···Q1Q0),与在取样时间T1内输入电压的平均值VI成正比的。只要VI<VREF,转换器就能正常地将输入模拟电压转换为数字量,并能从计数器读取转换的结果。如果取VREF=2nV,则λ=VI,计数器所计的数在数值上就等于被测电压。
由于双积分A/D转换器在时间内采的是输入电压的平均值,因此具有很强的抗工频干扰的能力。尤其对周期等于T1或几分之一的对称干扰(所谓对称干扰是指整个周期内平均值为零的干扰),从理论上来说,有无穷大的抑制能力。即使当工频干扰幅度大于被测直流信号,使得输入信号正负变化时,仍有良好的抑制能力。由于在工业系统中经常碰到的是工频(50Hz)或工频的倍频干扰,故通常选定采样时间T1总是等于工频电源周期的倍数,如20ms或40ms等。另一方面,由于在转换过程中,前后两次积分所采用的同一积分器。因此,在两次积分期间(一般在几十到数百毫秒之间),R、C和脉冲源等元器件参数的变化对转换精度的影响均可忽略。
最后必须指出,在第二积分阶段结束后,控制电路又使开关S2闭合,电容C放电,积分器回零。电路再次进入准备阶段,等待下一次转换开始。
4.特点
(1)计数脉冲个数λ与RC无关,可以减小由RC积分非线性带来的误差。
(2)对脉冲源CP要求不变,只要在T1+T2时间内稳定即可。
(3)转换精度高。
(4)转换速度慢,不适于高速应用场合。
单片集成双积分式A/D转换器有ADC-EK8B(8位,二进制码)、ADC-EK10B(10位,二进制码)、MC14433(7/2位,BCD码)等。
要图联系[email protected]
C. 双积分式A/D转换器的工作原理是什么
双积分型 AD 转换器属于间接型 AD 转换器,它是把待转换的输入模拟电压先转换为一个中间变量,例如时间 T ;然后再对中间变量量化编码,得出转换结果,这种 AD 转换器多称为电压 - 时间变换型(简称 VT 型)。图 7.11 给出的是 VT 型双积分式 AD 转换器的原理图。
转换开始前,先将计数器清零,并接通 S 0 使电容 C 完全放电。转换开始,断开 S 0 。整个转换过程分两阶段进行。
第一阶段,令开关 S 1 置于输入信号 U i 一侧。积分器对 U i 进行固定时间 T 1 的积分。积分结束时积分器的输出电压为:
可见积分器的输出 U O1 与 U I 成正比。这一过程称为转换电路对输入模拟电压的采样过程。在采样开始时,逻辑控制电路将计数门打开,计数器计数。当计数器达到满量程 N 时,计数器由全“1”复“0”,这个时间正好等于固定的积分时间 T 1 。计数器复“ 0 ”时,同时给出一个溢出脉冲(即进位脉冲)使控制逻辑电路发出信号,令开关 S 1 转换至参考电压 - V REF 一侧,采样阶段结束。
第二阶段称为定速率积分过程,将 U O1 转换为成比例的时间间隔。采样阶段结束时,一方面因参考电压 - V REF 的极性与 U I 相反,积分器向相反方向积分。计数器由 0 开始计数,经过 T 2 时间,积分器输出电压回升为零,过零比较器输出低电平,关闭计数门,计数器停止计数,同时通过逻辑控制电路使开关 S 1 与 u I 相接,重复第一步。如图 7.12 所示。因此得到:
即
式 (7.5) 表明,反向积分时间 T 2 与输入模拟电压成正比。
在 T 2 期间计数门 G 2 打开,标准频率为 f CP 的时钟通过 G 2 ,计数器对 U G 计数,计数结果为 D ,由于
则计数的脉冲数为
计数器中的数值就是 AD转换器转换后数字量,至此即完成了 VT 转换。若输入电压 ,则,它们之间也都满足固定的比例关系,如图 7.12 所示。
双积分型 AD 转换器若与逐次逼近型 AD 转换器相比较,因有积分器的存在,积分器的输出只对输入信号的平均值有所响应,所以,它突出优点是工作性能比较稳定且抗干扰能力强;由式以上分析可以看出,只要两次积分过程中积分器的时间常数相等,计数器的计数结果与 RC 无关,所以,该电路对 RC 精度的要求不高,而且电路的结构也比较简单。双积分型 AD 转换器属于低速型 AD 转换器,一次转换时间在 1~2ms ,而逐次比较型 AD 转换器可达到 1 m s 。不过在工业控制系统中的许多场合,毫秒级的转换时间已经足足有余,双积分型 AD 转换器的优点正好有了用武之地。
D. mc14052参数 应用电路
mc14052,就是CD4052,是双四选一模拟门电路,主要用于多路模拟信号的切换。
常用在AD转换电路的前级,做多路模拟信号的输入切换,也有用在程控放大电路上,做放大倍数的切换。还有用在双积分电路上,做积分和反向积分切换。使用电源电压是3V-18V,常使用5V电源电压或者正负5V电源电压。
四路声源输人切换电路(CD4024、CD4052(mc 14052))电路:
CD4052BE和MC14052BCP是一样的芯片,双4选1模拟开关。CD4052BE的CD是美国无线电公司等用的标号,MC14052BCP的MC是美国摩托罗拉公司用的标号。军级产品。
CD4052/CC4052是一个差分4通道数字控制模拟开关,有A、B两个二进制控制输入端和INH输入,具有低导通阻抗和很低的截止漏电流。幅值为4.5~20V的数字信号可控制峰峰值至20V的模拟信号。
例如,若V DD=+5V,VSS=0,VEE=-13.5V,则0~5V的数字信号可控制-13.5~4.5V的模拟信号,这些开关电路在整个VDD-VSS和VDD-VEE电源范围内具有极低的静态功耗,与控制信号的逻辑状态无关,当INH输入端=“1”时,所有通道截止。
E. 反相积分电路为什么不可以加直流电压
谁说的? 不管正反向,积分电路输出都是电压对时间的积分。常用的数字万用表使用的就是双积分电路,第一次积分使用外加取样电压,第二次积分使用反向参考电压,使用过零比较器获得积分的总时间,以此总时间内对固定频率的脉冲计数,得到的值就是输出值,由此过程可见,积分电路完全可以正反向积分。
F. 数字式万用表直流电压测量电路原理
原理就是积分原理
不同的输入电压达到指定电压的积分时间是不同的,而且和输入电压具有线性关系,所以目前常用的数字万用表内核都是双积分电路,第一次将外来的取样电压向上积分,第二次向下积分,两次积分排除掉了电路本身的元件误差,获得的时间值作为计数器的控制脉冲,对一个频率固定的信号进行计数,计数到的数字就等于电压值。
双积分的精度非常高,适合多位数的数字万用表。由于积分两次,消耗的时间也长,不适合测量变来变去的信号
G. 怎样设计数字万用表电路
那就要用传统的数字逻辑电路大组合哇,
基本的双积分电路,主要就是一个计数器,有许多时序电路去控制嘛。
其实,老师自己都没有做过。
H. 双积分A/D转换器不稳定是什么原因
理论上应该没有问题,可能是硬件、做工的问题。比如元件(电阻、电容)的数值偏差过大、电路设计布线不合理(接地点不良、接地点不合理、数字和模拟地没有分开)、电源电压不稳定等。
I. 有什么常用的单片机型号是带有双积分型AD的
ADuC系列的单片机,内部有24位的A/D转换器。这是内部A/D精度最高的单片机了。
双积分A/D电路速度并不是最快了。而ADuC系列采用更先进的A/D技术,速度更快了。