❶ 那个师傅给说下图中G1是什么元件,有什么作用啊,还有上面一点的X11有什么用谢谢
晶振。给左边的单片机提供外部时钟的。
❷ 跪求高人指教 可控硅模块 MTC55-16 电路图上 K1 K2 A1 A1 G1G2 分别接在什么东西 上的 起到什么作用
单相可控硅,你熟悉不?
模块里面是两个单相可控硅!
K1 、 A1 、 G1是一个可控硅的三个极; K2 、 A2、G2 是另一个可控硅的三个极。不过这两个可控硅有一个连接点。一般是其中一个可控硅的A极与另一个可控硅的K相连接。
G是控制极,接脉冲触发回路。 A、K是阳极、阴极,接主回路,不过触发回路也需要K极。
❸ 电路图中G代表什么
电路图中G代表灵敏电流计。
灵敏电流计是供学生实验或实验室检查直流电路中微弱的电流专或微小属电压用的,它是一种高灵敏度的磁电式仪表,可以测量10^-7~10^-12A的微小电流。如用作电桥测量、温差电偶、电磁感应及光电效应等。
(3)电路图G1扩展阅读:
当线圈中通有电流IS时,由于气隙磁场的作用而产生的电磁力矩推动线圈偏转。线圈在偏转过程中,支承它的张丝发生扭曲变形,同时产生与电磁力矩方向相反的弹性回复力矩,该力矩与线圈偏转角成正比。
当这两个力矩大小相等时,线圈不再偏转而处于平衡位置a0,此时有:NSBIg=Dab,式中N为线圈的匝数,S为线圈的面积,B为线圈所在气隙处的磁感应强度,D为张丝的扭转系数,这几个量均为灵敏电流计的固有参数。
其中,a0=NSBIs/D=Si*Is。其中,NSB*Si/D定义为电流计的电流灵敏度,其倒数1/Si称为电流计常量。
❹ 这是一个电容焊接充放电电路,图中红色部分,G1,G2,G3都没接线为何电容两端有高压,求解呀。
由Q1、Q2组成的振荡触发电路通过T2耦合到G1、G2、G3的。
❺ 电路图中G是表示什么
G为灵敏电流计是供学生实验或实验室检查直流电路中微弱的电流或
微小电压用的,它是一种高灵敏度的磁电式仪表,可以测量10^-7~10^-12A的微小电流.如用作电桥测量、温差电偶、电磁感应及光电效应等.实验中的检流计.如图是电表外形结构.表头的结构同直流安培表、直流伏特表相
同.灵敏电流计的量程电流[1](满刻度电流值)为30微安.仪表使用前
应先检查指针是否对准零点,如有偏差,应用零点调节器调零.用灵敏电流计检查电路中微弱的电流时,可直接串联在待测电路
中,从电流计指针是否偏转来确定电路中有无电流通过.如果指针向
右偏转,则表明电路有电流从“+”接线柱到“-”接线柱;如果指
针向左偏转,则表明电流方向由“-”接线柱流向“+”接线柱.用灵敏电流计检查电路两点间是否存在电压,可直接并联在电路
中待测的两点,根据指针偏转确定两点间是否存在电压,根据偏转的
方向可确定两点间电压的方向.无论用作检测电流或微小电压,此电流计都不能精确地测量电流
强度或两点间的电压,而只能作为检流计或示零仪表用.任何时候都不应使通过电流计的电流强度超过满刻度电流值,更
不要将电流计误作安培表,或伏特表接入电路.仪表搬运时应使两接线柱短路.当灵敏电流计的外接电阻不同时,灵敏电流计内部的线圈其阻尼特性不同,当外接电阻较小时,线圈则缓慢地趋向平衡位置,称为过阻尼状态;当外接电阻较大时,线圈做减幅周期振动,称为欠阻尼状态;在这两种状态之间存在一种临界状态,即线圈以最快的速度达到平衡位置,而不发生振动,称为临界阻尼状态,此时外接电阻叫做临界电阻.在实验中,通过电流计的电流与光标的偏转格数是成正比的,比例系数C称之为电流计常数,且电流计有一定的内阻.
❻ 请问谁有罗技G1鼠标的主板电路图啊
可以去客服换一个,他们一般也不会修的,在保期内会直接换个给你。
G1有3种,旧版蓝色保期是3年,键鼠套的黑灰色和新款的金色保期是1年的。
❼ 施密特电路图
施密特触发器不同于前述的各类触发器,它具有以下特点:
1. 施密特触发器属于电平触发,对于缓慢变化的信号仍然适用,当输入信号达到某一定电压值时,输出电压会发生突变。
2. 输入信号增加和减少时,电路有不同的阈值电压,它具有如图10.9.1所示的传输特性。
10.9.1 CMOS门电路组成的施密特触发器
由CMOS门组成的施密特触发器如图10.9.2所示。电路中两个CMOS反相器串联,分压电阻R1、R2将输出端的电压反馈到输入端对电路产生影响。
(a)逻辑电路 (b)逻辑符号
图10.9.1 施密特电路的传输特性 图10.9.2 CMOS反相器组成的施密特触发器
假定电路中CMOS反相器的阈值电压Vth≈VDD/2,R1< R2,且输入信号vI为三角波,下面分析电路的工作过程。
由电路不难看出,G1门的输入电平vⅠ1决定着电路的状态,根据叠加原理有:
当vⅠ=0V时,G1门截止,G2门导通,输出端vO=0V。此时vⅠ1≈0V。输入从0V电压逐渐增加,只要vⅠ1< Vth,则电路保持vO=0V不变。当vⅠ上升使得vⅠ1=Vth时,使电路产生如下正反馈过程:
这样,电路状态很快转换为vO≈VDD, 此时VⅠ的值即为施密特触发器在输入信号正向增加时的阈值电压,称为正向阈值电压,用VT+表示。即由式
得
所以
当vⅠ1>Vth时,电路状态维持vO=VDD不变。vⅠ继续上升至最大值后开始下降,当vⅠ1=Vth时,电路产生如下正反馈过程:
这样电路又迅速转换为vO≈0V的状态,此时的输入电平为vⅠ减小时的阈值电压,称为负向阈值电压,用VT+表示。根据式
此时有
将VDD=2Vth代入可得
只要满足vⅠ< VT-,施密特电路就稳定在vO≈0V的状态。由式和式可求得回差电压为
ΔVT=VT+-VT-
上式表明,回差电压的大小可以改变R1、R2的比值来调节。电路工作波形及传输特性如图10.9.3 所示。
图10.9.3 施密特触发器工作波形及传输特性
施密特反向器
10.9.2 用TTL门构成的施密特触发器
图10.9.4所示为用两个TTL门构成的施密特触发器电路。图中 G1为与非门,G2为反相器,vⅠ通过电阻R1和R2来控制门的状态。因为R1R2值不能取很大,因此串接二极管D,防止vO=VOH时,G2的负载电流过大。
图10.9.4 两级TTL门构成的施密特触发器
当输入vⅠ=0时,门G1截止,vO=VOH;门G2导通,输出vO=VOL。当vⅠ逐步上升,使二极管D导通,则:
式中,VD为二极管D导通压降,VOL≈0.3V≈0V.当v1上升到Vth时,由于G1另一输入端v1’仍低于Vth,电路状态不变。当vⅠ逐步上升至使v1’≥Vth(Vth为TTL门阈值电平)时,门G1将由截止转为导通;门G2由导通转为截止,vO=VOH,触发器发生一次翻转。此时vⅠ为上限触发电平,如果忽略v1’=Vth时G1的输入电流,则可得到
故得
只要输入vⅠ>VT+,触发器就处于输出 vO=VOH的稳定状态。
当输入vⅠ逐步下降时,只要vⅠ≤Vth,门G1将由导通转为截止,vO=VOH;门G2由截止转为导通,vO=VOL,触发器再次发生翻转,此时vⅠ为下限触发电平VT-=Vth,因此,电路的回差电压
调整电阻R1和R2得分压值,可以改变回差大小。其工作波形如图10.9.3所示。
10.9.3 集成施密特触发器
在集成门电路中,带有施密特触发器输入的反相器和与非门,如施密特CMOS六反相器CC40106,施密特TTL四输入双与非门CT5413/CT7413等。集成施密特触发器性能稳定,应用广泛,下面以CMOS集成施密特触发器CC40106为例介绍其工作原理。
图10.9.5 CMOS集成施密特触发器电路 (a) 电路图 (b) 逻辑符号 (c) 传输特性曲线
由图10.9.5(a)可见,它由施密特电路、整形及和缓冲输出级组成。
1.施密特电路
施密特电路由P沟道MOS管TP1~TP3、N沟道MOS管TN4~TN6组成,设P沟道MOS管的开启电压VGS为VTP,N沟道MOS管开启电压VGS为VTN,输入信号vⅠ为三角波。
当vⅠ=0时,TP1、TP2导通,TN4、TN5截止,电路中vO’为高电平(vO’≈VDD),TP9截止,TN10导通,v”为低电平,使TP11导通,TN12截止,vO=VOH。v0"使TP7导通,TN8截止,维持vO’≈VDD,vO’的高电平同时使Tp3截止,TN6导通且工作于源极输出状态。即TN5的源极TN4的漏极电位vS5≈VDD-VTN6,该电位较高。
vⅠ电位逐渐升高,当vⅠ>VTN4时,TN4先导通,由于TN5其源极电压vS5较大,即使vⅠ>VDD/2,TN5仍不能导通,直至vⅠ继续升高直至TP1、TP2趋于截止时,随着其内阻增大,vO’和vS5才开始相应减少。
当vⅠ-VS5≥VTN5时,TN5导通,并引起如下正反馈过程:
于是TP1、TP2迅速截止,vO’为低电平,电路输出状态转换为vO=0。
vO’的低电平使TN6截止,TP3导通且工作于源极输出器状态,TP2的源极电压vS2≈0-VTP。
同理可分析,当vⅠ逐渐下降时,电路工作过程与vⅠ上升过程类似,只有当│vⅠ-vS2│>│VTP│时,电路又转换为vO’为高电平,vO=VOH的状态。
在VDD>>VTN +│VTP│的条件下,电路的正向阈值电压VT+远大于VDD/2,且随着VDD增加而增加。在vⅠ下降过程中的负向阈值电压VT-也要比VDD/2低得多。
由上述分析可知,电路在vⅠ上升和下降过程分别有不同的两个阈值电压,具有施密特电压传输特性。其传输特性如图10.9.3所示。
2.整形级
整形级由TP7、TP8、TP9、T10组成,电路为两个首尾相连的反相器。在vO’上升和下降过程中,利用两级反相器的正反馈作用可使输出波形有陡直的上升沿和下降沿。
3.输出级
输出级为TP11和TN12组成的反相器,它不仅能起到与负载隔离的作用,而且提高了电路带负载能力。
图10.9.6所示为4输入与非门(TTL)电路,图中D1~D4构成四输入二极管与门,T1、T2构成射级耦合双稳态触发器(施密特触发器),T3、D5是射级跟随器,完成电平转移,T4、T5、T6构成推拉式输出电路。
http://cache..com/c?word=%CA%A9%C3%DC%CC%D8%3B%B5%E7%C2%B7%3B%CD%BC&url=http%3A//www%2E95678%2Ecn/diannaoketang/xinshiji/shuzi/10090000%2Ehtm&b=53&a=19&user=