⑴ 稳压二极管的工作原理和应用电路
1、稳压电路
如下图是阻容降压电路图,当负载RL电流增大时,电阻R2上的压降增大,负载电压随之降低,但是,只要稳压管两点电压稍有下降,稳压管电流就会显著减小,使通过电阻R2的电流和电阻R2上的压降基本不变,使得负载电压也基本不变。负载电流减小时,稳压过程则与此过程相反。
以上回答由MDD辰达行电子提供。
⑵ 稳压二极管的工作原理是什么
要理解稳压二极管的工作原理,只要了解二极管的反向特性就行了。所有的晶体二极管,其基本特性是单向导通。就是说,正向加压导通,反向加压不通。这里有个条件就是反向加压不超过管子的反向耐压值。那么超过耐压值后是什么结果呢?一个简单的答案就是管子烧毁。但这不是全部答案。试验发现,只要限制反向电流值(例如,在管子与电源之间串联一个电阻),管子虽然被击穿却不会烧毁。而且还发现,管子反向击穿后,电流从大往小变,电压只有很微小的下降,一直降到某个电流值后电压才随电流的下降急剧下降。正是利用了这个特性人们才造出了稳压二极管。使用稳压二极管的关键是设计好它的电流值。
⑶ 稳压二极管的工作原理
稳压二极管是一个特殊的面接触型的半导体硅二极管,其V-A特性曲线与普通二回极管相似,但反向击答穿曲线比较陡~稳压二极管工作于反向击穿区,由于它在电路中与适当电阴配合后能起到稳定电压的作用,故称为稳压管。稳压管反向电压在一定范围内变化时,反向电流很小,当反向电压增高到击穿电压时,反向电流突然猛增,稳压管从而反向击穿,此后,电流虽然在很大范围内变化,但稳压管两端的电压的变化却相当小,利于这一特性,稳压管访问就在电路到起到稳压的作用了。而且,稳压管与其它普能二极管不同之反向击穿是可逆性的,当去掉反向电压稳压管又恢复正常,但如果反向电流超过允许范围,二极管将会发热击穿,所以,与其配合的电阻往往起到限流的作用。
⑷ 稳压二极管的工作原理是什么
工作在
反向
击穿区,利用其陡峭的反向
特性
在
电路
中起稳压作用
⑸ 稳压管的工作原理 稳压管的工作原理是什么
1、稳压二极管的特点就是击穿后,其两端的电压基本保持不变。这样,当把稳压管接入电路以后,若由于电源电压发生波动,或其它原因造成电路中各点电压变动时,负载两端的电压将基本保持不变。
2、要理解稳压二极管的工作原理,只要了解二极管的反向特性就行了。所有的晶体二极管,其基本特性是单向导通。就是说,正向加压导通,反向加压不通。这里有个条件就是反向加压不超过管子的反向耐压值。
3、那么超过耐压值后是什么结果呢?一个简单的答案就是管子烧毁。但这不是全部答案。试验发现,只要限制反向电流值(例如,在管子与电源之间串联一个电阻),管子虽然被击穿却不会烧毁。而且还发现,管子反向击穿后,电流从大往小变,电压只有很微小的下降,一直降到某个电流值后电压才随电流的下降急剧下降。正是利用了这个特性人们才造出了稳压二极管。使用稳压二极管的关键是设计好它的电流值。
⑹ 谁能解释一下这个稳压电路的工作原理
想要知道稳压二极管的是如何工作的,那就得先来了解一下稳压二极管的工作原理。
稳压二极管工作原理:通常,二极管都是正向导通,反向截止,单向导通性;不过,加在二极管上的反向电压如果超过二极管的承受能力,二极管就要击穿损毁。但是有一种二极管,它的正向特性与普通二极管相同,而反向特性却比较特殊;当反向电压加到一定程度时,虽然管子呈现击穿状态,通过较大电流,却不损毁,并且这种现象的重复性很好;只要管子处在击穿状态,尽管流过管子的电在变化很大,而管子两端的电压却变化极小起到稳压作用。这种特殊的二极管叫稳压二极管。
所以,其实二极管的工作原理挺简单的,那就是当电压超过稳定电压额定值,会发生雪崩效应,二极管相当于导通状态,将多余的电流风流,保证供电电压稳定。
⑺ 二极管稳压电路到底是什么原理满足什么情况稳压或者击穿
稳压的正向特性与普通二极管相同,而反向特性却比较特殊:当反向电压加到一定程度时,虽然管子呈现击穿状态,通过较大电流,却不损毁,并且这种现象的重复性很好;只要管子处在击穿状态,尽管流过管子的电流变化很大,而管子两端的电压却变化极小起到稳压作用。
所以二极管在反向击穿的时候才能稳压
⑻ 稳压二极管是怎么工作的
稳压二极管工作原理:稳压二极管的伏安特性曲线的正向特性和普通二极管差不多,反向特性是在反向电压低于反向击穿电压时,反向电阻很大,反向漏电流极小。但是,当反向电压临近反向电压的临界值时,反向电流骤然增大,称为击穿,在这一临界击穿点上,反向电阻骤然降至很小值。尽管电流在很大的范围内变化,而二极管两端的电压却基本上稳定在击穿电压附近,从而实现了二极管的稳压功能。
⑼ 稳压二极管工作原理
稳压二极管工作原理:
此二极管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件。在这临界击穿点上,反向电阻降低到一个很小的数值,在这个低阻区中电流增加而电压则保持恒定,稳压二极管是根据击穿电压来分档的,因为这种特性,稳压管主要被作为稳压器或电压基准元件使用。
1.Uz— 稳定电压
指稳压管通过额定电流时两端产生的稳定电压值。该值随工作电流和温度的不同而略有改变。由于制造工艺的差别,同一型号稳压管的稳压值也不完全一致。例如,2CW51型稳压管的Vzmin为3.0V, Vzmax则为3.6V。
2.Iz— 额定电流
指稳压管产生稳定电压时通过该管的电流值。低于此值时,稳压管虽并非不能稳压,但稳压效果会变差;高于此值时,只要不超过额定功率损耗,也是允许的,而且稳压性能会好一些,但要多消耗电能。
3.Rz— 动态电阻
指稳压管两端电压变化与电流变化的比值。该比值随工作电流的不同而改变,一般是工作电流愈大,动态电阻则愈小。例如,2CW7C稳压管的工作电流为 5mA时,Rz为18Ω;工作电流为1OmA时,Rz为8Ω;为20mA时,Rz为2Ω ; > 20mA则基本维持此数值。
4.Pz— 额定功耗
由芯片允许温升决定,其数值为稳定电压Vz和允许最大电流Izm的乘积。例如2CW51稳压管的Vz为3V,Izm为20mA,则该管的Pz为60mWo
5. α---温度系数
如果稳压管的温度变化,它的稳定电压也会发生微小变化,温度变化1℃所引起管子两端电压的相对变化量即是温度系数(单位:﹪/℃)。一般说来稳压值低于6V属于齐纳击穿,温度系数是负的;高于6V的属雪崩击穿,温度系数是正的。温度升高时,耗尽层减小,耗尽层中,原子的价电子上升到较高的能量,较小的电场强度就可以把价电子从原子中激发出来产生齐纳击穿,因此它的温度系数是负的。雪崩击穿发生在耗尽层较宽电场强度较低时,温度增加使晶格原子振动幅度加大,阻碍了载流子的运动。这种情况下,只有增加反向电压,才能发生雪崩击穿,因此雪崩击穿的电压温度系数是正的。这就是为什么稳压值为15V的稳压管其稳压值随温度逐渐增大的,而稳压值为5V的稳压管其稳压值随温度逐渐减小的原因。例如2CW58稳压管的温度系数是+0.07%/°C,即温度每升高1°C,其稳压值将升高0.07%。
对电源要求比较高的场合,可以用两个温度系数相反的稳压管串联起来作为补偿。由于相互补偿,温度系数大大减小,可使温度系数达到0.0005%/℃。
6.IR— 反向漏电流
指稳压二极管在规定的反向电压下产生的漏电流。例如2CW58稳压管的VR=1V时,IR=O.1uA;在VR=6V时,IR=10uA。
⑽ 并联型稳压电路稳压原理
后向调整电路(稳压电路)输送一个不稳定的脉动的直流电压。因稳压电路输内出电流的变容动而引起输出电压变化时。调整电路使保持原值或者只有极小的变动。
调整电路中的调整管工作在线性放大区的称为线性电源,工作在非线性区的则称为开关电源。线性电源分为简单稳压电路、并联稳压电路、串联稳压电路和集成化稳压电路。
(10)二极管稳压电路原理扩展阅读:
利用稳压管的反向击穿特性。它是利用稳压二极管的反向击穿特性稳压的,由于 反向特性陡直,较大的电流变化,只会引起较小的电压 变化。适合于负载电流小,输出电压固定的场合。
线性稳压电路的工作原理实际就是对输出电压进行实时采样,并以采样电压进行负反馈,来调节输出管的动态电阻和压降而使输出电压保持稳定。
比如,由于输入电压下降或负载电流增大而使输出电压产生下跌,这时候稳压器就会通过上述的一系列动作(采样、负反馈、调整)使输出管的电阻减小。