导航:首页 > 电器电路 > 基本电路原理

基本电路原理

发布时间:2022-09-11 17:48:00

A. 电路的原理

如果你是学电气专业的话,电路原理是最基础最重要的一门课。学不好它,后面的模电、电机、电力系统分析、高压简直没办法学。

对于这门课,你要想真正的领悟和掌握,奥秘就在于不能停止思考。而且我觉得这是最重要的一点。我以江辑光的《电路原理》为例(这本书编的相当不错)解释为何不能停止思考。

电路几乎是第一本开始培养你工程师思维的书,它不同于数学物理,很多可以理论推导。而电路更多的是你的思考和不断累积的经验。

在江的书中,前面用了四章讲解了电阻电路的基本知识,包括参考方向问题、替代定理,支路法、节点电压、回路电流、戴维南、特勒根、互易定理。这些基本内容都要掌握到烂熟于心才能在之后的章节里灵活的用。怎样才能烂熟于心?我时刻提醒自己要不停思考。这套教材的课后习题就是最好的激发你大脑思考能力的宝库。可以说里面的每一道题都极具针对性,题目并不难。

一个合格的工程师应该把更多的时间留给思考如何最合理地解决问题,而不是花大把时间计算,电路的计算量是非常大的,一个节点电压方程组有可能是四元方程,显然这些东西留给计算器算就好了。为了学好电路你应该买一个卡西欧991,节省那些不必要浪费的时间留下来思考问题本身。

前四章的基础一定要打得极为扎实,不是停留在只是会用就行了,那样学不好电路。你要认真研究到每个定理是怎么来的,最好自己可以随手证明,你要知道戴维宁是有叠加推出来的,而叠加定理又是在电阻电路是线性时不变得来的,互易定理是由特勒根得来的。这一切知识都是靠细水长流一点点积累出来的,刚开始看到他们你会觉得迷糊,但你要相信这是一个过程,渐渐地你会觉得电路很美妙甚至会爱上它。当你发现用一页纸才能解出来的答案,你只用五六行就可以将其解决,那时候你就会感觉电路好像是从身体中流淌出来一般。这就是一直要追求的境界。

后面就是非线性,这一章很多学校要求都不高,而且考起来也不难,最为兴趣的话研究起来很有意思。

接着后面是一阶二阶动态电路,这里如果你高数的微分方程学得不错的话,高中电路知识都极本可以解了。这一部分的本质就是求解微分方程。

说白了,你根据电路列出微分方程是需要用到电路知识的,剩下来怎么解就看你的数学功底了。但是电路老师们为了给我们减轻压力有把一阶电路单独拿出来做了一个专题,并将一切关于它上面的各支路电流或者电压用一个简单的结论进行了总结,即三要素法。

学了三要素一阶电路连方程也不用列了。只要知道电路初始状态、末状态和时间常数就可以得到结果。如果你愿意思考,其实二阶电路也可以类比它的,在二阶电路中你只要求出时间常数,初值和末值,同样也可以求通解。

在这部分的最后,介绍了一种美妙的积分——卷积。很多人会被他的名字唬住,提起来就很高科技的样子。其实它的确很高科技,但只要你掌握它的精髓,能够很好的用它,对你的电路思维有极大的提升,关于卷积在知乎和网络上都有很多很好的解释和生动的例子,我也是从他们那里汲取经验的。我在这里只能提醒你,不要因为老师不做重点就忽略卷积,否则这将无异于丢了一把锐利的宝剑。记得我在学习杜阿美尔积分(卷积的一种)的时候,感觉如获至宝,虽然书上对它的描述只有一句话。但为了那一句我的心情竟久久无法平静,因为实在太好用了。

接下来是正弦电路,这里主要是要理解电路从时域域的转化,这里是电路的第一次升华,伟大的人类用自己的智慧把交流量头上打个点,然后一切又归于平静了,接下来还是前四章的知识。我想他用的就是以不变应万变的道理吧,所有量都以一个频率在变,其效果就更想对静止差不多了吧,但是他们对电容和电感产生了新的影响,因为他们的电流电压之间有微分和积分的关系。在新的思路下你可以将电感变成jwl,将电容变成1/jwc,接下来你又改思考为什么可以这样变。

这是在极坐标下的电流电压关系可以推导出来的。你要再追根溯源说,为什么可以用复数来代替正弦?那是因为欧拉公式将正弦转化成了复数表达。你还问欧拉公式又是什么?它是迈克劳林(泰勒)公式得到的。你必须不断地思考,不断地提问才能明白这一起是怎么回事。

不过这都是基础,在正弦稳态这里精髓在于画向量图,能正确地画出向量图你才能说真正理解了它。向量图不是乱画的,不是你随便找个支路放水平之后就可以得到正确的图,有时候走错了路得不到正确答案不说,反而可能陷入思维漩涡。做向量图一般要以电阻支路或者含有电阻的支路为水平向量,接下来根据它的电流电压来一步步推。而且很多难题都是把很多信息隐藏在图里面,不画得一幅好图你是解不出来的。这也需要自己揣摩。

跟着张飞老师一起学习

1(功率因素校正)如何设计

2如何快速去理解一个陌生的组件的data sheet

3详细讲解NCP1654 PFC控制芯片内部的电路设计

4D触发组、RS触发组、与门、或门的详细讲解

5NCP芯片内部各种保护(OUP、BO、UVLO、OPL、UVP、OCP)电路和实现方式的详细讲解

6如何用数字电路,通过逻辑控制,实现软起功能,关于软起作用的深度讲解

7V/I转换、I/V转换、V/F转换、F/V转换的讲解

8三极管如何工作在放大区,如何精准控制电流

9如何设计镜像电流源,如何让电流间接控制,如何用N管和P管做镜像恒流源

10PFC电阻采样电流如何做到全周期采样,既不管在MOSFET ON和OFF之间,都能实现电流采样。为什么要采样负极电源?

后面是互感,我相信很多人被同名端折磨的死去活来。其实,电感是描述,线圈建立磁场能力的量,电感大了,产生磁场越大。所以同名端的意思就是:从同名端流入的电流,磁场相加,表现在方程上为电感相加。只要牢记这一点,列含有互感的方程式就不会错了。你不要胡思乱想,有时候你会被电流方向弄糊涂,别管它,图上画的是参考方向,就算你假设的方向与实际方向反了,对真确结果依然没有丝毫影响。这里其实是考察你对参考方向的理解。

然后是谐振,这是很有趣也很有用的一节,无论是电气,通信,模电还是高压都离不开它。这是在一种美妙的状态下,电厂能量和立场能量达到完美的交替。通过谐振可以实现滤波、升压等具有实际意义的电路。但就电路内容来说这里并不难,总结一下就是,阻抗虚部为零则串联谐振,导纳虚部为零为并联谐振。在求解谐振频率时有时候用导纳求解会比较方便,这在于多做题开阔思路。

接下来是三相电路。要我来说,三相电路是最简单的部分。很多人觉得它难(当然一开始我也觉得它让人头晕),完全是因为我们总是害怕恐惧本身。其实你看它有三个地但一点也不难。这要你头脑清晰别被他的表面吓住了。三相电路跟普通电路没有任何区别。做到五个六个电源也不会害怕,因为你知道,一个所有元件都告知的电路,用节点电压或回路电流肯定是可以求的出来的。为什么到了三相你就被吓得魂不守舍了。你是不明白线电压和相电流的关系,还是一相断线对中线电流的影响?你管那些干嘛?什么相啊线呀都只是个代号而已。你把它看成一个普通电路解,它就是一个普通电路而已。很多同学总是喜欢在线和相的关系上纠结。其实一句话就可以概括的:线量都是向量的根3倍。其实这些都不用记,需要的时候画个图就来了。最重要的是你要明白三相只不过是个有三个电源的普通电路而已。你只要会节点电压法,不学三相的知识都可以解答的很好。当你以一个正常电路看它的时候,三相就已经学得差不多了。三相唯一的难点在计算,只要你是个细心的人,平时多找几个题算算,以后三相想错都难。

后面是拉普拉斯变换。这里是电路思维的又一次飞跃。人们发现高阶电路真的不好求解,而且如果电源改变的话除了卷积,找不到更好的办法。所以为了方便的使用卷积,前辈们把拉氏变换引入电路。如果说前面正弦稳态时域到频域是由泰勒公式一步步推来的。那这里就是高数的最后一章——傅立叶变换推倒的。关于傅立叶知乎也有许多精彩的讲解,自己找吧。傅立叶变换有两种形式,一种是时域形态,一种是频域形态。而拉普拉斯变换就是将由频域形态的傅立叶变换,推广到复频域形态。其基本变换公式也是由傅立叶变换公式推广得到的。这一章的学习,你要从变换公式入手,自己把基本的几个变换推导出来。还要理解终值定理和初值定理,这两个定理是检验结果正确与否的有力证据。学电路只知道思路是一回事,能做对是另外一回事。只有在学习中不断培养自己开阔的视野和强大的计算能力才可以学好这门课,学电路是要靠硬功夫的,你看着老师解题的时候感觉信手拈来,自己却百思不得其解。那是功夫没下到位。我考研时看了电路大概一百天,新书都翻烂了,自己的旧书都快散架了,各种习题不计重复的做了至少1500道以上。当我做电路的时候,我会觉得时间停止了,根本感受不到自习室里还有别人。那种你在冥思苦想后终于解决一个问题所带来的足以让你笑出声来的快乐,是陪伴着我的最好的药。每天走在月光下,我都会想,如果当不了科学家,那就干点别的吧。

所以说啊,要学好电路,还是要发自内心的爱上它。

1芯片内部是如何做到低功耗的

2NCP1654内部是如何用数字电路实现电压和电流相位跟踪的

3电压源对电容充电与电流源对电容充电的区别和波形有何不同

4单周期控制电压公式的详细推论

5如何进行有效的公式推导,推导公式的原则和方法?如何在公式推导中引入检流电阻?

6当我们公式推导结束后,如何将公式转化为电路。如何自己搭建电路,实现公式推导的结果?这也是本部视频讲解的核心。

7如何用分立组件搭建OCC单周期控制的PFC

8基于NCP1654搭建PFC电路

9详细讲解PFC PCB板调试完整过程。包括:用示波器测试波形、分析波形、优化波形,最终把PFC功率板调试出来

B. 电路基本理论都有哪些

你好,
本书是为大学本科电类专业电路理论课程编写的教材。本教材根据国家电工课程教学指导内委员会制定的对高容等学校电路课程教学的基本要求,在基本内容略有扩展的基础上,突出学习方法、思维方式的训练,仍到准确、简明、高效。全书共分为13章。第1~8章涵盖了电路的基本元件,基本定律、定理,电路的一般分析方法,直流电路及一阶、二阶电路,正弦稳态电路,三相电路,非正弦周期电流电路。第9~13章包含动态电路的复频域分析法(拉普拉斯变换法),双口网络,状态方程,开关电容网络和分布参数电路的稳态分析。总学时可以在90~110学时之间灵活掌握,也可少于90学时。本书还可以供电力、电子、自动化、计算机通信等各方面的工程技术人员参考。
希望可以帮到你

C. 电路的基本原理是什么

电路是由用电设备(称为负载)、元器件、供电设备(称为电源)通过导线连接而构成的提供给电荷流动的通路。电路是电场的种特殊形式,当电场被束缚在电荷流动的路径周围很小的范围时,即形成电踪。
为电路工作提供能量的电源,完成放大,滤波、移相等功能的元器件;用电设备(负载),连接电源、元器件和用电设备的导线;控制电源接入的开关等
客观上电路提供电荷流动的通路,电荷携带着电能在电路中流动,从电源带走电能,而在用电元器件中又释放电能,因此电路的工作伴随着能量的运动
电路主要有下列作用
能量传输将电源的电能传输给用电设备(负载)
能量转换将传输到负载的电能根据需要转换成其它形式的能量,如光、声、热、机械能等

D. 电路工作原理

电路工作原理:电路是进行电能与其它形式的能量之间的相互转换。因此,用一些物理量来表示电路的状态及各部分之间能量转换的相互关系。

电路是由金属导线和电气、电子部件组成的导电回路,称为电路。在电路输入端加上电源使输入端产生电势差,电路连通时即可工作。电路是电流所流经的路径,或称电子回路,是由电气设备和元器件(用电器),按一定方式联接起来。如电阻、电容、电感、二极管、三极管、电源和开关等,构成的网络。

最简单的电路是由电源和用电器(负载),导线,开关等元器件组成。电路导通时叫做通路,断开时叫开路。只有通路,电路中才有电流通过。电路某一处断开叫做断路或者开路。如果电路中电源正负极间没有负载而是直接接通叫做短路,这种情况是决不允许的。

另有一种短路是指某个元件的两端直接接通,此时电流从直接接通处流经而不会经过该元件,这种情况叫做该元件短路。开路是允许的,而第一种短路决不允许,因为电源的短路会导致电源烧坏,用电器短路会导致用电器、电表等无法正常工作现象的发生。

电路规模的大小,可以相差很大,小到硅片上的集成电路,大到高低压输电网。根据所处理信号的不同,电子电路可以分为模拟电路和数字电路。

E. 电路原理

电路,顾名思义就是指由基本元件组成的电流通路,它主要有两个功能:一个是处理能量,包括能量的产生、传输、分配和使用等;另一个是处理电信号,包括信号的获取、放大、滤波等。

电路的基本变量电压、电流、电荷、磁链,四个基本变量之间又两两构成四个二端基本元件——电阻(U-I)、电容(Q-U)、电感(Ψ-I)、忆阻器(Ψ-Q)。根据电路中的激励和响应是否呈线性关系,电路可分为线性电路和非线性电路;根据电路是否含有储能元件(电感和电容),电路分为电阻电路和动态电路(动态电路研究其暂态过程和稳态过程)。如果电流的参考方向是从电压的参考方向的正号流入,则说明电压和电流具有关联参考方向,否则说明电压和电流具有非关联参考方向。如果元件的U和I参考方向关联,则得到的P=UI为吸收功率;如果元件的U和I参考方向非关联,则得到的P=UI为发出功率;所以一般设电阻U I关联参考方向,电源的U I非关联参考方向。

电路的基本元件包括电阻、电容、电感、独立源、受控源、二极管、理想变压器等等。电阻R根据激励与响应的关系分为线性电阻和非线性电阻,元件约束R=UI;电容C以电场形式储存能量,具有储存电荷的能力,元件约束Q=CU;电感L以磁场形式储存能量,具有储存磁链的能力,元件约束Ψ=LI;独立源分为独立电压源(提供恒定电压,U-I曲线为平行于I轴的直线)和独立电流源(提供恒定电流,U-I曲线为平行于U轴的直线);受控源根据控制量和受控量的不同分为压控电压源、压控电流源、流控电压源、流控电流源;二极管只能通过正向电流而不能通过反向电流;变压器是利用线圈的互感原理,而理想变压器一种耦合系数为1,L1、L2、M都无穷大的变压器。

电路受到两类约束——元件约束和拓扑约束,元件约束与电路元件的自身性质有关,拓扑约束与电路元件无关,只与电路的结构有关。说到拓扑约束就不得不提到基尔霍夫定律,基尔霍夫定律是整个电路理论的基础,它主要包括两个部分——KCL和KVL,狭义KCL指对于电路的任一个节点而言,流入该节点的电流和一定等于流出该节点的电流和,广义KCL指对于任何一个子电路而言,流入的电流和也一定等于流出的电流和;狭义KVL指对于电路的任一个回路而言,其电压降的代数和为零,广义KVL指对于电路中的任一个节点到另一个任一节点,其电压降始终相等,与路径无关。对于一个电路,它有b个电路元件,n个节点,则一定会有b-n+1个独立回路,则一定会有b个元件约束方程,n-1个KCL方程,b-n+1个KVL方程,一共会出现2b个独立方程,这就是电路求解的著名的“2b”法。

电阻和电源是可以实现等效变换的,所谓的等效变换并非替换,而是指两者的UI特性一致,等效变换制后对整个电路的分析没有影响。电阻的等效变换:①电阻的串并联,电阻串联起到分压的作用,Req=R1+R2,电阻并联起到分流的作用,Req= R1xR2/(R1+R2)。②平衡电桥,当电阻呈现“H”连接,如果两个斜向电阻的乘积相等则流经中间电阻的电流为零。③Y-△变换,各个相上的电阻均相等,则连接成“Y”形的电阻和连接成“△”形的电阻可以相互转换,Y→△,各电阻乘以3,反之,各电阻除以3。④加流求压和加压求流,对于含有受控源和电阻的一端口网络,可以虚拟一个端口电压(或端口电流),然后用端口电压(或端口电流)表示出端口电流(或端口电压),比值则为等效电阻(或等效电导)。电源的等效变换:两个独立电压源串联为两者相加之和,独立电压源与任何元件并联都等于独立电压源本身,两个独立电压源除非电压相等,否则不能并联;两个独立电流源并联为两者相加之和,独立电流源与任何元件串联都等于独立电流源本身,两个独立电流源除非电流相等,否则不能串联。独立电压源的实际模型为电压源和其内阻串联,独立电流源的实际模型为电流源和其内阻的并联,独立电压源等效转换为独立电流源时,内阻由串联改为并联,大小不变,转换的独立电流源电流为独立电压源电压除以内阻阻值,电流方向不变,独立电流源等效转换为独立电压源时,则反之。

对一个网络而言,其中的两个接线端,电流大小相等,方向相反,则成为一个端口。一端口网络即具有一个端口的网络,比如上面可以等效变换的电阻和独立源等单个元件;二端口网络即具有两个端口的网络,运算放大器和MOSFET都属于二端口网络。二端口网络的参数有输入端输入电阻Ri,输出端输出电阻Ro,还有R参数(用I1、I2表示U1、U2,互易时R12=R21,对称时R12=R21且R11=R22)、G参数(用U1、U2表示I1、I2,互易时G12=G21,对称时G12=G21且G11=G22)、T参数(用U2、-I2表示U1、I1,互易时T11T22- T12T21,对称时T11T22- T12T21且T11=T22)。互易二端口指将二端口网络的激励和响应交换位置后,响应不变。对称二端口指从二端口网络的任何一侧看入,激励在本侧和对侧引起的相应都是一样的。二端口的连接方式有级联(T=T1T2)、并联(G=G1+G2)、串联(R=R1+R2)。

运算放大器是一个集成电路,首先它的作用是放大信号,利用其信号放大的特性又可;以构成信号运算的功能,因此称之为“运算放大器”。运算放大器有三个工作区:负向饱和区:Uo=—Usat,线性区:Uo=Aud,正向饱和区:Uo=Usat,其中A是运算放大器的(开环)放大倍数。运放的输入电阻为Ri,输出电阻为Ro,理想的运放满足Ri→∞,为MΩ量级,Ro→0,为10Ω量级,A为∞,理想的运放满足输入端的“虚短”和“虚断”,但鉴于放大倍数非常大,而输出电压Uo又是一个有限值,所以要求输入电压ud非常小,这是非常不经济的,因此引入负反馈。反相输入端供电Us,反相输入端电阻为R1(为KΩ量级),负反馈电阻为Rf(为KΩ量级),可以实现Uo=-Rf/R1Xus,这就是反相比例放大器。此外,运用运放还可以构成正向比例放大器、加法器、减法器、微分器、积分器。

MOSFET,即金属氧化物半导体场效应晶体管。MOSFET有三个极:G极为栅极、D极为源极、S极为漏极,A为(开环)放大倍数。MOSEF有三个工作区:①截止区:UGS UDS,DS为为电阻Ron。用MOSFET可以构成逻辑门电路——是门(缓冲器)和非门(反相器)、与非门和与门、或非门和或门。

分析电路的一般方法有两种——节点电压法和回路电流法。对于一个有b个元件、n个节点、b-n+1个独立回路而言,节点电压法的核心是以节点电压为变量表示支路电流,进而列写出n-1个KCL独立方程,形式为(1/R1+1/R2)U1-1/R2U2=Is1+Is2。等式左边(1/R1+1/R2)表示自电导;1/R2表示互电导,即公共电导,取负号;等式右边Is1+Is2表示流入该节点的电流源的和。回路电流法的核心是对每一个独立回路设置一个虚拟的回路电流,以回路电流为变量,表示出支路电压进而列写出b-n+1个KVL独立方程,形式为R1I11+ R2(I11-I12)= Us1+Us2。等式左边R1表示自电阻,R2表示互电阻,即公共电阻,当I11和I12同向取正号,反向取负号,等式右边为沿回路电流方向的电源的电压升。

电路有三种比较常用的定理——叠加定理、戴维南定理、替代定理。叠加定理适用于线性电路,各独立源共同作用时在任一支路的电流(或两点间的电压)等于各独立源分别作用于该支路的电流(或两点间的电压)的代数和,由叠加定理推导出的齐性定理,即对于线性电路,电路中所有的独立源变化K倍,各支路的电流(或两点间的电压)也变化K倍。戴维南定理对于任何线性电阻、线性受控源、独立电源组成的一端口网络都可以等效为一个理想电压源U0和电阻Req的串联电路,其中U0为一端口网络的开路电压,电阻Req为独立源置零(独立电压源开路,独立电流源短路)时的等效电阻。替代定理适用于线性电路和非线性电路,即对于一个两端电压为U,电流为I的支路而言,可以用一个电压为U的独立电压源替代,也可以用一个电流为I的独立电流源替代。

对于非线性电阻电路而言,我们一般研究有唯一解的电路,即电阻是单向递增的。非线性电阻有两部分组成,一部分为静态电阻,这一段Rs= U0/I0,(U0I0)即为工作点,另一部分为动态电阻,这一段Rd=△U/△I|(U0I0)。对于非线性电路一般使用的方法有解析法(通过大量的数学计算)、图解法(当电路中只有一非线性电阻时,将非线性电阻以外的电路进行戴维南等效,画出其UI曲线,再画出非线性电阻的UI曲线,两线的交点即为工作点)、分段线性解法(把非线性电阻的非线性UI曲线分成不同的线性阶段,通过分阶段假设和验证,求出工作点)。对于非线性电路而言还有一种比较特殊的电路,即电路激励中含有小信号,分析的方法是小信号分析法,就是把激励分为大信号(即直流稳定信号)和小信号,分别求出大信号和小信号单独作用下的电路响应,然后得到响应和。求解步骤如下:忽略小信号,用解析法、图解法、分段线性法求解出工作点,然后忽略大信号,求小信号激励下的电路响应,元件的小信号模型为:非线性电阻为工作点下的动态电阻,非线性受控源为原来的非线性控制函数在工作点处线性化的值。对MOSFET施加小信号激励可以实现放大器的作用。

无论是线性电阻电路或者是非线性电阻电路都是电阻电路,电路中还有一个重要的家族就是动态电路。动态电路即还有储能元件的电路,主要指电容和电感。电路发生变化,即换路时,电阻的电压和电流发生突变;电容具有储能的作用,电压不发生突变;电感具有储能的作用,电流不发生突变。根据电容和电感的这一特性,总结出了换路定律,即Uc(0-)=Uc(0+), il(0-)=il(0+),这里有一个大前提即电容的电流和电感的电压为有限值。同时,电容的UI关系如下:I=C/dt;电感的UI关系如下:U=LdI/dt。对于动态电路而言,根据换路定律和电容电感的UI关系,我们就可以列写出非齐次一阶常系数常微分方程,方程的解为特解+通解。动态电路的响应由两部分组成——强制响应和自由响应,强制响应就是外加激励在电路中产生的响应,对应着一阶常系数常微分方程中的特解,也是电路达到稳态时的稳态响应;自由响应对应着一阶常系数常微分方程中的通解。对一阶常系数常微分方程的分析发现,电容的形式为Uc=US+(U0-US)e-t/τ,ic=Cc/dt,U0初始电压,US稳态电压,τ为RC;电感的形式为iL=iS+(i0-iS)e-R/τ,UL=LdiL/dt,i0初始电压,iS稳态电压,τ为L/R。以此可见,对于电容只需要知道初始电压U0,稳态电压US,τ(RC);对于电感只需要知道初始电压i0,稳态电压iS,τ(L/R);因此又叫三要素法。电路的响应又可以分为零状态响应和零输入响应,零输入响应即没有外加激励,仅由动态元件的初始储能引起的响应,零状态响应即动态元件的初始储能为零,外加激励下引起的响应。对于零状态响应有两种比较特殊的外加激励——单位阶跃函数ε(t)和单位冲激函数δ(t),其对应的零状态响应分别为s(t)、h(t),其中δ(t)=dε(t)/t,f(x)δ(t)=f(0)。因为有单位冲激函数的存在,电容的电流和电感的电压不为有限值,换路定律的前提不存在,故电容的电压和电感的电流在换路时发生了跳变。对于一个函数f(x)激励的电路而言,其对应的零状态响应为r(t)=∫f(τ)h(t-τ)dτ。利用一阶电路(含有一种储能元件的电路)的应用有①传输延迟:利用两个MOSFET构成的逻辑门,因为有寄生电容的存在,形成的缓冲器具有传输延迟效果。②在负反馈的运放,在反相输入端加入电容,形成积分器;在反馈线路上加入电容,形成微分器。此外还有滞回比较器、脉冲发生器、整流器、降压斩波器。

含有两种储能元件的电路,求解时就需要列写出二阶常系数常微分方程,其特解为强制分量,通解为自由分量,求通解时,若电路特征方程的特征根为两个不等实根P1、P2,则电路处于过阻尼的状态,电路为无震荡衰减,其通解为A1ep1t+A2ep2t;若电路特征方程的特征根为两个相等的实根P,则电路为临界阻尼,电路为无震荡衰减,其通解为(A1+ A2t)ept;若电路特征方程的特征根为两个共轭复根P1、P2,则电路为欠阻尼,电路为震荡衰减,α=R/2L,ωd=√ ̄[1/(LR)-α2]。其通解为ke-αtsin(ωdt+Ψ)。利用二阶电路的应用有汽车点火器、脉冲电源、升压斩波器(利用占空比的不同)。

以上研究的电阻电路和动态电路都是基于外加激励为直流的情况下,接下来我们看一下当外加激励为交流的情况下的电路分析。在交流电源中,正弦交流电源是最为常见的一种,正弦函数Asin(ωt+Ψ),A为幅值;ω为角速度,表征频率;Ψ为相位。正弦量相加减、积分和求导的过程中,其始终都是一个频率相等的正弦量,故引入相量来表示正弦量,对于正弦量Asin(ωt+Ψ),可以用相量B∠Ψ,其中B为正弦量的有效值,也就是模,Ψ代表初相位。相量有两种表示方法:①直角坐标表示形式:a+jb;②极坐标表示形式:c∠Ψ,两种形式的相互转换关系为:a=CcosΨ,b=CsinΨ;c2=a2+b2,Ψ=arctan(b/a)。一旦用相量表示正弦量后,就可以重新观察元件特性的相量形式。对于电感而言,相量U=jωL乘以相量I;对于电容而言,相量I=1/(jωC)乘以相量U,j表示旋转因子,一个j表示逆时针旋转90度。把相量的逻辑代入到基尔霍夫定律中就可以得到阻碍电流的复阻抗(电阻+电抗,电抗包括容抗和感抗),导通电流的复导纳(电导+电纳,电纳包括容纳和感纳)。电路的电压为Usin(ωt),电流为Isin(ωt-Ψ),其中Ψ为电流落后电压的相位,有功功率为P=UIcosΨ,cosΨ被称为功率因数,有功功率其实也就是电路消耗在电阻上的功率;无功功率为Q=UIsinΨ,无功功率是指电感或电容等储能元件与外电路发生的功率交换,电感是始终吸收功率的,而电容是始终发出功率的,故具有“互补”的作用,这种性质常被用来调整功率因数,被称为无功补偿。视在功率是S=√ ̄(P2+Q2),与有功功率和无功功率始终守恒不同,视在功率一般是不守恒的。

动态电路的电压和电流会随着激励的频率改变而变化,这叫做动态电路的频率特性,主要包括幅频特性和相频特性。将正弦电压源Us、电阻R、电容C串联,以相量Us为输入电压,以电阻R上的电压为输出电压,则Uo=jωCR/(1+ jωCR)Us,当ω→∞时,输出电压等于输入电压,当ω→0时,输出电压为零,这就是电容的隔直通交,这也就是高通滤波器,与微分器的原理一致;如果以电容C上的电压为输出电压,则Uo=1/(1+ jωCR)Us,当ω→∞时,输出电压等于零,当ω→0时,输出电压等于输入电压,这就是低通滤波器,与积分器的原理一致。将正弦电压源Us、电阻R、电容C、电感L串联,以相量Us为输入电压,以电阻R上的电压为输出电压,可以实现带通滤波器,与高通、低通滤波器不同,带通滤波器具有两个截止频率,两个截止频率的差值就是带宽。利用频率特性制成的全通滤波器,则是相频特性,只移动相位。

电路中会出现谐振的情况,所谓谐振就是指端口的电压和电流同相位,此时端口的入端电阻等效阻抗为纯阻性。RLC串联时,发生谐振,电抗为零,即jωL+1/(jωC)=0,则ω0=√ ̄(1/LC),此时电感上的电压和电容上的电压大小相等,相位差180度,方向相反,同时电感电压和电容电压发生放大,所以串联谐振又被称为电压谐振,其电抗频率(Xω)曲线为过(ω00)的单向递增曲线;RLC并联时,发生谐振,电纳为零,即1/(jωL)+jωC=0,则ω0=√ ̄(1/LC),此时电感上的电流和电容上的电流大小相等,相位差180度,方向相反,同时电感电流和电容电流发生放大,所以并联谐振又被称为电流谐振,其电抗频率(Xω)曲线是关于x=ω0的双曲线,当ω<ω0,X>0,电路呈感性,当ω>ω0,X<0,电路呈容性。RLC串联时,电感或电容的电压与电阻电压的比值就是品质因数,品质因数表征了信号放大的能力,品质因数越高,信号放大能量越强;品质因数还表征了能量效率,因为品质因数也可以看作是谐振时电路储存的总能量除以周期内电路消耗的能量,品质因数越高,储存能量越强;品质因数也表征了电路的选择性,品质因数越高,幅频特性越尖锐,选择性越高。当电路呈感性时,需要加入电容来补偿,当电路呈容性时,需要加入电感来补偿。

两个邻近的电感线圈,通过其中一个线圈的电流所产生的磁链不仅与自身交链,还和邻近的线圈交链,这就是互感。相互之间有一个互感系数M,耦合系数K=M/√ ̄(L1L2)。为了更好地判断线圈电压,设置了同名端,对于两个线圈而言,有这样的一对端钮,当电流分别从这两个端钮中流入各自线圈时,它们产生的自感磁通、互感磁通都是相互加强的,则称这一对端钮为同名端。我们可以通过串联、并联和具有一个公共端的两线圈实现等效去耦。变压器正是利用了互感的原理,有三种变压器,分别是空心变压器、全耦合变压器和理想变压器,空心变压器是指以不导磁的材料作为芯柱的变压器,原边和副边具有绕线电阻R。全耦合变压器是指在空心变压器的基础上,忽略原边和副边的绕线电阻R,耦合系数K=1,也就是M=√ ̄(L1L2),可以得到U1/ U2=n,n=√ ̄(L1/L2),I1= U1/(jωL1)-1/n I2,n被称为之全耦合变压器的变比,等于原副线圈的匝数比。理想变压器是在全耦合变压器的基础上,L1、L2、M均为无穷大,则得到:U1/ U2=n,I1= -1/n I2。只需要知道n即可。利用变压器的应用有中间抽头变压器构成的全波整流器,中间抽头变压器实现的电话线路的二-四线转换。

同电阻的“Y-△”变换一样,三相电源也有Y-△的区分,Y三相电源为三相四线(中间为中性线),△三相电源为三相三线,不过其中每个相电压大小相等,相位相互落后120度。Y电源连接,线电压=√ ̄3相电压,线电流=相电流;△电源连接,线电压=相电压,线电流=√ ̄3相电流,分析三相电路时,把电源转换为Y三相电源,把负载转化为Y三相负载,求解单一相等效电路,根据对称性求出其他两相。

最后对于周期性的非正弦激励下的电路,可以利用傅里叶级数进行分析,但是使用的基本方法是与上面一致的。

F. 电路的工作原理是什么

这是典型的互补多谐振荡器电路,
1接通电源瞬间电容上的电压为零G1r基极被箝为低电位,G1截止。2,R1对电容充电,当电位高于G1导通电位时G1开始导通,随后开始正反馈过程,G1导通-G2导通-G2射极电位上升,G1G2饱和。3,C向G1 放电,电位逐步下降。基极电流减少,G1退出饱合,随后又是正反馈过程。G1 电流减少- G2电流减少-身射极电位下降-通过C使G1 基极电流进一步减少至G1G2截止。

G. 电路工作原理

电路板的工作原理是利用板基绝缘材料隔离开表面铜箔导电层,使得电流沿着预先设计好的路线在各种元器件中流动完成诸如做功、放大、衰减、调制、解调、编码等功能。
电路板主要由焊盘、过孔、安装孔、导线、元器件、接插件、填充、电气边界等组成。常见的板层结构包括单层板(Single Layer PCB)、双层板(Double Layer PCB)和多层板(Multi Layer PCB)三种。各组成部分的主要功能如下:
焊盘:用于焊接元器件引脚的金属孔。
过孔:有金属过孔和非金属过孔,其中金属过孔用于连接各层之间元器件引脚。
安装孔:用于固定电路板。
导线:用于连接元器件引脚的电气网络铜膜。
接插件:用于电路板之间连接的元器件。
填充:用于地线网络的敷铜,可以有效的减小阻抗。
电气边界:用于确定电路板的尺寸,所有电路板上的元器件都不能超过该边界。

H. 基本放大电路原理

一、放大电路的组成与各元件的作用

Rb和Rc:提供适合偏置--发射结正偏,集电结反偏。C1、C2是隔直(耦合)电容,隔直流通交流。

共射放大电路

Vs ,Rs:信号源电压与内阻; RL:负载电阻,将集电极电流的变化△ic转换为集电极与发射极间的电压变化△VCE

二、放大电路的基本工作原理

静态(Vi=0,假设工作在放大状态) 分析,又称直流分析,计算三极管的电流和极间电压值,应采用直流通路(电容开路)。

基极电流:IB=IBQ=(VCC-VBEQ)/Rb集电极电流:IC=ICQ=βIBQ集-射间电压:VCE=VCEQ=VCC-ICQRc 动态(vi≠0)分析:

放大电路对信号的放大作用是利用三极管的电流控制作用来实现 ,其实质上是一种能量转换器。

三、构成放大电路的基本原则

放大电路必须有合适的静态工作点:直流电源的极性与三极管的类型相配合,电阻的设置要与电源相配合,以确保器件工作在放大区。输入信号能有效地加到放大器件的输入端,使三极管输入端的电流或电压跟随输入信号成比例变化,经三极管放大后的输出信号(如ic=β*ib)应能有效地转变为负载上的输出电压信号。

电压传输特性和静态工作点

一、单管放大电路的电压传输特性

图解分析法: 

输出回路方程:

输出特性曲线:

AB段:截止区,对应于输出特性曲线中iB<0的部分。

BCDEFG段:放大区

GHI段:饱和区

作为放大应用时:Q点应置于E处(放大区中心)。若Q点设置C处,易引起载止失真。若Q点设置F处,易引起饱和失真。

用于开关控制场合:工作在截止区和饱和区上。二、单管放大电路静态工作点(公式法计算)

单电源固定偏置电路:选择合适的Rb,Rc,使电路工作在放大状态。

I. 电路的基本原理

电路:由金属导线和电气、电子部件组成的导电回路,称为电路。在电路输入端加上电源使输入端产生电势差,电路即可工作。有些直观上可以看到一些现象,如电压表或电流表偏转、灯泡发光等;有些可能需要测量仪器知道是否在正常工作。按照流过的电流性质,一般分为两种。直流电通过的电路称为“直流电路”,交流电通过的电路称为“交流电路”。
电路的作用是进行电能与其它形式的能量之间的相互转换。因此,用一些物理量来表示电路的状态及各部分之间能量转换的相互关系。
电路图电流在实用上有两个含义:第一,电流表示一种物理现象,即电荷有规则的运动就形成电流。第二,本来,电流的大小用电流强度来表示,而电流强度是指在单位时间内通过导体截面积的电荷量,其单位是安培(库/秒),简称安,用大写字母A表示。但电流强度平时人们多简称电流。所以电流又代表一个物理量,这是电流的第二个含义。
电流的真实方向和正方向是两个不同的概念,不能混淆。
习惯上总是把正电荷运动的方向,作为电流的方向,这就是电流的实际方向或真实方向,它是客观存在,不能任意选择,在简单电路中,电流的实际方向能通过电源或电压的极性很容易地确定下来。
但是,在复杂直流电路中,某一段电路里的电流真实方向很难预先确定,在交流电路中,电流的大小和方向都是随时间变化的。这时,为了分析和计算电路的需要,引入了电流参考方向的概念,参考方向又叫假定正方向,简称正方向。
所谓正方向,就是在一段电路里,在电流两种可能的真实方向中,任意选择一个作为参考方向(即假定正方向)。当实际的电流方向与假定的正方向相同时,电流是正值;当实际的电流方向与假定正方向相反时,电流就是负值。
换一个角度看,对于同一电路,可以因选取的正方向不同而有不同的表示,它可能是正值或者是负值。要特别指出的是,电路中电流的正方向一经确定,在整个分析与计算的过程中必须以此为准,不允许再更改。
从数值上看,AB两点之间的电压是电场力把单位正电荷从A点移动到B点时所做的功;而电场中某点的电位等于电场力将单位正电荷自该点移动到参考点所做的功。比较电压和电位的概念可以看出,电场中某点的电位就是该点到参考点之间的电压,电位是电压的一个特殊形式。对于电位来说,参考点是至关重要的。在同一电路中,当选定不同的参考点,同一点的电位数值是不同的。
原则上说,参考点可以任意选定。在电工领域,通常选电路里的接地点为参考点,在电子电路里,常取机壳为参考点。
在实际应用时,仅知道两点间的电压往往不够,还要求知道这两点中哪一点电位高,哪一点电位低。例如,对于半导体二极管来说,还有其阳极电位高于阴极电位时才导通;对于直流电动机来说,绕组两端的电位高低不同,电动机的转动方向可能是不同的。由于实际使用的需要,要求我们引入电压的极性,即方向问题。
电路中因其他形式的能量转换为电能所引起的电位差,叫做电动势。用字母E表示,单位是伏特。在电路中,电动势常用符号δ表示。
在物理学中,用电功率表示消耗电能的快慢.电功率用P表示,它的单位是瓦特,简称瓦,符号是W.电流在单位时间内做的功叫做电功率 以灯泡为例,电功率越大,灯泡越亮。灯泡的亮暗由实际电功率决定,不用所通过的电流、电压、电能、电阻决定!
在电路中:如果指定流过元件的电流参考方向是从标以电压的正极性的一端指向负极性的一端,即两者的参
(Ohm's Law):在同一电路中,导体中的电流跟导体两端的电压成正比,跟导体的电阻阻值成反比,基本公式是I=U/R(电流=电压/电阻)
诺顿定理:任何由电压源与电阻构成的两端网络, 总可以等效为一个理想电流源与一个电阻的并联网络。
戴维宁定理:任何由电压源与电阻构成的两端网络, 总可以等效为一个理想电压源与一个电阻的串联网络。
分析包含非线性器件的电路,则需要一些更复杂的定律。实际电路设计中,电路分析更多的通过计算机分析模拟来完成。
它是线性元件的一个重要定理。在线性电阻中,某处电压或电流都是电路中各个独立电源单独作用时,在该处分别产生的电压或电流的叠加。
对于一个具有n个结点和b条支路的电路,假设各条支路电流和支路电压取关联参考方向,并令(i1,i2,···,ib)、(u1,u2,···,ub)分别为b条支路的电流和电压,则对于任何时间t,有i1*u1+i2*u2+···+ib*ub=0。
在对偶电路中,某些元素之间的关系(或方程)可以通过对偶元素的互换而相互转换。对偶的内容包括:电路的拓扑结构、电路变量、电路元件、一些电路的公式(或方程)甚至定理。
所有的电路在工作时,每一个元件或线路都会有能量的工作运用,即电能运用,而所有电路里的电能工作运用即称为电路功率。
电路或电路元件的功率定义为:【功率=电压*电流(P=I*V)】。
自然界里能量不会消灭,固有一定律【能量不灭定律】。
电路总功率=电路功率+各电路元件功率。例如:【电源(I*V)=电路(I*V)+ 各元件(I*V)】
在电路中的能量有时会变为热能或辐射能…等其他能量到空气中,这就是电路或电路元件会发热的原因,不会全部形成电能于电路中,根据【总能量=电能+热能+辐射能+其他能量】。

本文引自网络。
不懂欢迎追问,

J. 三相电路基本原理

三相电路基本原理是具有一组或多组电源,每组电源由三个振幅相等、频率相同、彼此间相位差一样的正弦电源构成,且电源和负载采用特定的连接。

三相电源及三相负载都有星形和三角形两种连接方式,当三相电源和三相负载通过输电线(其阻抗为ZL)连接构成三相电路时,可形成五种连接方式,分别称为Y0—Y0联结(有中线)、Y—Y联结(无中线)、Y一△联结、△一Y联结和△一△联结。

在三相电路中,三相负载的连接方式决定于负载每相的额定电压和电源的线电压。由于对称三相电路中每组的响应都是与激励同相序的对称量。

所以,每相不但相电压有效值相等,相电流有效值也相等。而且每相电压与电流的相位差也相等。从而每相的有功功率相等。

(10)基本电路原理扩展阅读

在三相电路中,只要有一部分不对称就称为不对称三相电路。

在三相电路中,三相负载吸收的复功率等于各项复功率之和。三相电路的瞬时功率为各相负载瞬时功率之和。在三相三线制电路中,不论对称与否,都可以使用两个功率表测量三相功率。即二瓦记法。

对称三相电源是由3个等幅值、同频率、初相依次相差120°的正弦电压源连接成星形(Y)或三角形(△)组成的电源。这三个电源依次称为A相、B相和C相。

上述三相电压的相序(次序)A、B、C称为正序或顺序。与此相反,称为反序或逆序。电力系统一般采用正序。

阅读全文

与基本电路原理相关的资料

热点内容
米家电助力折叠自行车怎么样 浏览:671
苗药瑰宝厂家电话多少 浏览:458
防水机械费包括什么 浏览:159
新意蜂家具 浏览:772
茶系家具怎么样 浏览:291
皇玛和全友哪个家具牌子好 浏览:538
电瓶三轮车维修怎么样 浏览:244
家用电器字号 浏览:50
多纳家具怎么样 浏览:518
怎么鉴别红木家具的角磨做假 浏览:517
新房维修基金开发商不交有什么问题 浏览:974
容声北京维修点 浏览:923
安徽家用家具多少钱 浏览:267
荔枝木家具图片欣赏 浏览:675
五洋电器家电制冷维修怎么样 浏览:363
日产维修费 浏览:317
大庆二手家具市场 浏览:14
约克空调维修服务中心 浏览:33
松下lx7怎么判断是不是翻新机 浏览:978
德康荣威维修电话 浏览:102