导航:首页 > 电器电路 > rc电路值

rc电路值

发布时间:2022-08-07 12:08:14

『壹』 RC电路中的时间常数

1).RC电路过渡过程产生的原因

图1

简单RC电路如图1所示,外加电压源为US,初始时开关K打开,电容C上无电压,即(0-)=0V。

当开关K闭合时,US加在RC电路上,由于电容电压不能突变,此时电容电压仍为0V,即uC(0+)=0V。

由于US现已加在RC组成的闭合回路上,则会产生向电容充电的电流i,直至电容电压uC=US时为止。

根据回路电压方程,可写出

解该微分方程可得

其中τ=RC。

根据回路电压的分析可知,uC将按指数规律逐渐升高,并趋于US值,最后达到电路的稳定状态,充电波形图2所示。

图2

2).时间常数的概念及换路定律:

从以上过程形成的电路过渡过程可见,过渡过程的长短,取决于R和C的数值大小。一般将RC的乘积称为时间常数,用τ表示,即

τ=RC

时间常数越大,电路达到稳态的时间越长,过渡过程也越长。

不难看出,RC电路uC(t)的过渡过程与电容电压的三个特征值有关,即初始值uC(0+)、稳态值uC(∞)和时间常数τ。只要这三个数值确定,过渡过程就基本确定。

电路状态发生变化时,电路中的电容电压不能突变,电感上的电流不能突变。将上述关系用表示式写出,即:

一般将上式称作换路定律。利用换路定律很容易确定电容上的初始电压

微分电路

电路结构如图W-1,微分电路可把矩形波转换为尖脉冲波,此电路的输出波形只反映输入波形的突变部微分电路分,即只有输入波形发生突变的瞬间才有输出。而对恒定部分则没有输出。输出的尖脉冲波形的宽度与R*C有关(即电路的时间常数),R*C越小,尖脉冲波形越尖,反之则宽。此电路的R*C必须远远少于输入波形的宽度,否则就失去了波形变换的作用,变为一般的RC耦合电路了,一般R*C少于或等于输入波形宽度的微分电路1/10就可以了。微分电路使输出电压与输入电压的时间变化率成比例的电路。微分电路主要用于脉冲电路、模拟计算机和测量仪器中。最简单的微分电路由电容器C和电阻器R组成(图1a)。若输入 ui(t)是一个理想的方波(图1b),则理想的微分电路输出 u0(t)是图1c的δ函数波:在t=0和t=T 时(相当于方波的前沿和后沿时刻), ui(t)的导数分别为正无穷大和负无穷大;在0<t<T 时间内,其导数等于零。 微分电路 微分电路的工作过程是:如RC的乘积,即时间常数很小,在t=0+即方波跳变时,电容器C 被迅速充电,其端电压,输出电压与输入电压的时间导数成比例关系。 实用微分电路的输出波形和理想微分电路的不同。即使输入是理想的方波,在方波正跳变时,其输出电压幅度不可能是无穷大,也不会超过输入方波电压幅度E。在0<t<T 的时间内,也不完全等于零,而是如图1d的窄脉冲波形那样,其幅度随时间t的增加逐渐减到零。同理,在输入方波的后沿附近,输出u0(t)是一个负的窄脉冲。这种RC微分电路的输出电压近似地反映输入方波前后沿的时间变化率,常用来提取蕴含在脉冲前沿和后沿中的信息。 实际的微分电路也可用电阻器R和电感器L来构成(图2)。有时也可用 RC和运算放大器构成较复杂的微分电路,但实际应用很少。

积分电路目录[隐藏]

简介
电路型式
参数选择
更多相关

[编辑本段]简介
标准的反相积分电路积分电路主要用于波形变换、放大电路失调电压的消除及反馈控制中的积分补偿等场合。
[编辑本段]电路型式
图①是反相输入型积分电路,其输出电压是将输入电图①②③压对时间的积分值除以时间所得的商,即Vout=-1/C1R1∫Vin dt,由于受运放开环增益的限制,其频率特性为从低频到高频的-20dB/dec倾斜直线,故希望对高频率信号积分时要选择工作频率相应高的运放。 图②是差动输入型积分电路,将两个输入端信号之差对时间积分。其输出电压Vout=1/C1R1∫(Vin2-Vin1)dt;若将图②的E1端接地,就变成同相输入型积分电路。它们的频率特性与图1电路相同。
[编辑本段]参数选择
主要是确定积分时间C1R1的值,或者说是确定闭环增益线与0dB线交点的频率f0(零交叉点频率),见图③。当时间常数较大,如超过10ms时,电容C1的值就会达到数微法,由于微法级的标称值电容选择面较窄,故宜用改变电阻R1的方法来调整时间常数。但如所需时间常数较小时,就应选择R1为数千欧~数十千欧,再往小的方向选择C1的值来调整时间常数。因为R1的值如果太小,容易受到前级信号源输出阻抗的影响。 根据以上的理由,图①和图②积分电路的参数如下:积分时间常数0.2s(零交叉频率0.8Hz),输入阻抗200kΩ,输出阻抗小于1Ω。 [1]
[编辑本段]更多相关
积分电路电路结构如图J-1,积分电路可将矩形脉冲波转换为锯齿波或三角波,还可将锯齿波转换为抛物波。电路原理很简单,都是基于电容的冲放电原理,这里就不详细说了,这里要提的是电路的时间常数R*C,构成积分电路的条件是电路的时间常数必须要大于或等于10倍于输入波形的宽度。输出信号与输入信号的积分成正比的电路,称为积分电路。 原理:从图得,Uo=Uc=(1/C)∫icdt,因Ui=UR+Uo,当t=to时,Uc=Oo.随后C充电,由于RC≥Tk,充电很慢,所以认为Ui=UR=Ric,即ic=Ui/R,故 Uo=(1/c)∫icdt=(1/RC)∫Uidt 这就是输出Uo正比于输入Ui的积分(∫Uidt) RC电路的积分条件:RC≥Tk

『贰』 rc电路的时间常数是什么

RC的时间常数是:表示过渡反应的时间过程的常数。在电阻、电容的电路中,它是电阻和电容的乘积。若C的单位是μF(微法),R的单位是MΩ(兆欧),时间常数的单位就是秒。

在这样的电路中当恒定电流I流过时,电容的端电压达到最大值(等于IR)的1-1/e时即约0.63倍所需要的时间即是时间常数 ,而在电路断开时,时间常数是电容的端电压达到最大值的1/e,即约0.37倍时所需要的时间。

学习方法:

RC电路先从数学上最简单的情形来看RC电路的特性。

假定RC电路接在一个电压值为V的直流电源上很长的时间了,电容上的电压已与电源相等,在某时刻t0突然将电阻左端S接地,此后电容上的电压会怎么变化:应该是进入了图中表示的放电状态。理论分析时,将时刻t0取作时间的零点。数学上要解一个满足初值条件的微分方程。

『叁』 RC延时电路怎么计算参数

电阻与电容相乘,然后开根,就是RC电路的延时常数。

『肆』 RC低频衰减电路中的RC值该怎么取

根据带宽要求来确定RC的值,Tr表示上升时间,BW表示RC网络的-3dB带宽,
经验公式:
Tr = 0.35/BW (1)
Tr = 2.2*RC (2)
由(1)(2)可得:
RC = 0.35/(2.2*BW)
印象中是这样的,不知道会不会有哪记错了,最直接的方法是用PSPICE软件搭一个电路仿真,又快又准。

『伍』 rc电路时间常数是什么

rc电路的时间常数公式是τ =RC。RC电路,全称电阻电容电路,一次RC电路由一个电阻器和一个电容器组成。按电阻电容排布,可分为RC串联电路和RC并联电路。

另外单纯RC并联不能谐振,因为电阻不储能,LC并联可以谐振。RC电路广泛应用于模拟电路、脉冲数字电路中,RC并联电路如果串联在电路中有衰减低频信号的作用,如果并联在电路中有衰减高频信号的作用,也就是滤波的作用。

在实际应用中通常使用电容器(以及RC电路)而非电感来构成滤波电路。这是因为电容更容易制造,且元件的尺寸普遍更小。

暂态响应

根据电路中外加激励的情况,将电路暂态过程中的响应分三种;

1.:零状态响应:换路后电路中的储能元件无初始储能,仅由激励电源维持的响应。

2:零输入响应:换路后电路中无独立电源,仅由储能元件初始储能维持的响应。

3:全响应:换路后,电路中既存在独立的激励电源,储能元件又有初始储能,它们共同维持的响应。

『陆』 RC电路中 阻抗的计算方法

RC电路中阻抗的计算公式:

1、RC 串联电路

电路的特点:由于有电容存在不能流过直流电流,电阻和电容都对电流存在阻碍作用,其总阻抗由电阻和容抗确定,总阻抗随频率变化而变化。RC 串联有一个转折频率: f0=1/2πR1C1。

当输入信号频率大于 f0 时,整个 RC 串联电路总的阻抗基本不变了,其大小等于 R1。

2、RC 并联电路

RC 并联电路既可通过直流又可通过交流信号。它和 RC 串联电路有着同样的转折频率:f0=1/2πR1C1。

当输入信号频率小于f0时,信号相对电路为直流,电路的总阻抗等于 R1;当输入信号频率大于f0 时 C1 的容抗相对很小,总阻抗为电阻阻值并上电容容抗。当频率高到一定程度后总阻抗为 0。

3、RC 串并联电路

RC 串并联电路存在两个转折频率f01 和 f02:f01=1/2πR2C1, f02=1/2πC1*[R1*R2/(R1+R2)]

当信号频率低于 f01 时,C1 相当于开路,该电路总阻抗为 R1+R2。当信号频率高于 f02 时,C1 相当于短路,此时电路总阻抗为 R1。当信号频率高于 f01 低于 f02 时,该电路总阻抗在 R1+R2 到R1之间变化。

(6)rc电路值扩展阅读

生活中的阻抗:

不同阻抗的耳机主要用于不同的场合,在台式机或功放、VCD、DVD、电视、电脑等设备上,常用到的是高阻抗耳机,有些专业耳机阻抗甚至会在200欧姆以上。

这是为了与专业机上的耳机插口匹配,此时如果使用低阻抗耳机,一定先要把音量调低再插上耳机,再一点点把音量调上去,防止耳机过载将耳机烧坏或是音圈变形错位造成破音。

而对于各种便携式随身听,例如CD、MD或MP3,一般会使用低阻抗耳机(通常都在50欧姆以下),这是因为这些低阻抗耳机比较容易驱动,同时还要注意灵敏度要高,对随身听、MP3来说灵敏度指标更加重要。当然,阻抗越高的耳机搭配输出功率大的音源时声音效果更好。

『柒』 什么是RC电路谐振值

RC电路的谐振值 f=1/RC,f的单位是频率,R的单位是欧姆,C的单位是法拉。

『捌』 RC电路如何计算延时时间

RC电路的延时时间根据电容器初始与结束状态的电压值及充电的电源电压值不同而会发生大范围的变化的。因此在计算前必须先确定电路的相应参数值,同时对充电电源应使用稳压电路,这样出来的结果才有参考意义。
计算公式:
延时时间=

R*C*ln((E-V)/E)
其中:
“—”是负号;电阻R和电容C是串联,R的单位为欧姆,C的单位为F;
E为串联电阻和电容之间的电压,V为电容间要达到的电压。ln是自然对数,
例如:
R(150K)和C(1000UF)之间的电压为12V,当电容C两极的电压达到3伏时的时间:
T
=—(150*1000)*(1000/1000000)*ln((12-3)/12)=43(秒)
另外,在常用的555电路中,电容充电初始电压为1/3Vcc.终止电压为2/3Vcc,此时其时间计算为:T=1.1R*C。

『玖』 什么是RC电路的时间常数

RC电路先从数学上最简单的情形来看RC电路的特性。在图.1 中,描述了问题的物理模型。假定RC电路接在一个电压值为V的直流电源上很长的时间了,电容上的电压已与电源相等(关于充电的过程在后面讲解),在某时刻t 0突然将电阻左端S接地,此后电容上的电压会怎么变化呢?应该是进入了图中表示的放电状态。理论分析时,将时刻t 0取作时间的零点。数学上要解一个满足初值条件的微分方程。
依据KVL定律,建立电路方程:
初值条件是
像上面电路方程这样右边等于零的微分方程称为齐次方程。
设其解是一个指数函数:
K和S是待定常数。
代入齐次方程得
约去相同部分得
于是
齐次方程通解
还有一个待定常数K要由初值条件来定:
最后得到:
在上式中,引入记号 ,这是一个由电路元件参数决定的参数,称为时间常数。它有什么物理意义呢?
在时间t = t 处,
时间常数 t是电容上电压下降到初始值的1/e=36.8% 经历的时间。
当t = 4 t 时, ,已经很小,一般认为电路进入稳态。
数学上描述上述物理过程可用分段描述的方式,如图9.1 中表示的由V到0的“阶跃波”的输入信号,取开始突变的时间作为时间的0点,可以描述为:
; 。
电阻与电容组成的电路。
用在与时间有关的地方。
rc电路三要素
在电源电压保持为恒定值的时间内,元件电压随时间变化的波形,由它的起始值(记为v(0+))、它的稳态终止值(记为v (∞))和时间常数 t 决定,可以一般地表示为:(),
这个式子非常有用。用它分析电路响应的方法,常称为三要素法。

『拾』 如何测量rc串联电路时间常数值

时域法:根据RC电路的阶跃响应特性,对RC电路施加一个阶跃电压,同时开始计时,测量电容上的电压,当电容电压达到输入电压的0.632时,停止计时,计时器的时间就是RC电路的时间常数。

RC电路时间常数反映了电流充放电的快慢。如果按初始速度放电,正好在T秒放完,当然实际放电速度是变化的。实验录到电压或电流的波形,就可以找出T。

原理:

测量电阻时间常数的原理是将待测电阻元件与时间常数已知的标准电阻器(或称做计算电阻标准)进行比较。计算电阻标准的特点是通过结构设计使其时间常数尽量小,或使其时间常数可按形状和尺寸准确计算出来。

对于低值电阻元件,一般可用时间常数已知的电阻器作为标准,在交流电位差计上或在交流双比电桥上进行比较。对于中值电阻元件,可利用专用的经典交流电桥和感应耦合比例臂电桥进行测量。

以上内容参考:网络-电阻时间常数测量

阅读全文

与rc电路值相关的资料

热点内容
家用电器处理办法 浏览:254
谢瑞麟手链坏了维修怎么办 浏览:657
扫码全自动洗衣机维修视频 浏览:343
苹果维修点潇湘人瑞 浏览:676
城建浦电路 浏览:384
合肥创维电视售后维修电话 浏览:488
维修流量及注意哪些事项 浏览:352
电路板金银 浏览:117
背带牛仔短裤怎么以旧翻新 浏览:115
短接铁轨电路 浏览:407
国家电网农电工怎么去 浏览:321
宜家宠物家具哪个好 浏览:139
为什么进口的家电质量好 浏览:761
兰州安宁区家电维修公司 浏览:877
采样电路模块 浏览:18
高碑店家具一条街哪里便宜 浏览:212
旧房翻新屋顶多少钱 浏览:66
丹尼尔惠灵顿维修点 浏览:750
读书朗g90S屏幕碎了维修多少 浏览:148
奥坎家具厂商电话多少 浏览:507