导航:首页 > 电器电路 > 二阶电路

二阶电路

发布时间:2021-01-10 10:18:00

1. 基础电路如何区分一阶电路和二阶电路

一阶电路里有一个电容或一个电感。二阶电路里有一个电容和一个电感。

简单的讲,一阶电路里有一个储能元件,可以是电容也可以是电感。

二阶电路里有两个储能元件, 可以都是电容也可以都是电感,也可以是一个电容、一个电感。

一阶电路需要解一阶微分方程、二阶电路需要解二阶微分方程。


(1)二阶电路扩展阅读:

1、一阶电路:

任意激励下一阶电路的通解一阶电路,a.b之间为电容或电感元件,激励Q(t)为任意时间函数,求一阶电路全响应一阶电路的微分方程和初始条件为:

df(t)dt+p(t)f(t)=(t)(1) f(0+)=u0其中p(t)=1τ,用“常数变易法”求解。令f(t)=u(t)e-∫p(t)dt,代入方程得u(t)=∫(t)e∫p(t)dtdt+c1f(t)=c1e-∫p(t)dt+e-∫p(t)dt∫(t)e∫p(t)dtdt=fh(t)+fp(t)。

(2)常数由初始条件决定。其中fh(t)、fp(t)分别为暂态分量和稳态分量。

2、三要素公式通用形式用p(t)=1τ和初始条件f(0+)代入(2)式有c1=f(0+)-fp(0+)f(t)=fp(t)+[f(0+)-fp(0+)]e-1上式中每一项都有确定的数学意义和物理意义。

fp(t)=e-1τ∫(t)e1τdt在数学上表示方程的特解,即t~∞时的f(t),所以,在物理上fp(t)表示一个物理量的稳态。(随t作稳定变化)。

fh(t)=c1e-1τ在数学上表示对应齐次方程的通解,是一个随时间作指数衰减的量,当时t~∞,fh(t)~0,在物理上表示一个暂态,一个过渡过程。

c1=f(0+)-fp(0+),其中fp(0+)表示稳态解在t=0时的值.τ=RC(或L/R),表示f(t)衰减的快慢程度,由元件参数决定。

3、稳态解的求取方法由于稳态解是方程的特解,由上面的讨论可知:

fp(t)=e-1τ∫(t)e1τdt。

对任意函数可直接积分求出。方程和初始条件为:

(1)didt+RLi=UmLcos(ωt+φu)i(0+)=I0ip(t)=e-LtR∫UmLcos(ωt+φu)eRtLdt。

用分步积分法求得ip(t)=UmR2+ω2L2cos(ωt+φu+θ),其中θ=tg-1(ωLR)ip(0+)=UmR2+ω2L2cos(φu+θ)。

(2)由于稳态解是电路稳定后的值,对任意函数可用电路的稳态分析法求出。

sZ=UmR2+ω2L2∠(φu+θ)ip(t)=UmR2+ω2L2cos(ωt+φu+θ).ip(0+)=UmR2+ω2L2cos(φu+θ)。3也可用试探法(待定系数法)求出fp(t)。

如上题中,可以令i=Imcos(ωt+Ψ),代入方程得Im=UmR2+ω2L2,Ψ=φu+θ,ip(t)=UmR2+ω2L2=cos(ωt+φu)。

4、二阶电路。

二阶电路分类。

零输入响应。

系统的响应除了激励所引起外,系统内部的“初始状态”也可以引起系统的响应。在“连续”系统下,系统的初始状态往往由其内部的“储能元件”所提供,例如电路中电容器可以储藏电场能量,电感线圈可以储存磁场能量等。

这些储能元件在开始计算时间时所存储的能量状态就构成了系统的初始状态。如果系统的激励为零,仅由初始状态引起的响应就被称之为该系统的“零输入响应”。

一个充好电的电容器通过电阻放电,是系统零输入响应的一个最简单的实例。系统的零输入响应完全由系统本身的特性所决定,与系统的激励无关。

当系统是线性的,它的特性可以用线性微分方程表示时,零输入响应的形式是若干个指数函数之和。指数函数的个数等于微分方程的阶数,也就是系统内部所含“独立”储能元件的个数。

假定系统的内部不含有电源,那么这种系统就被称为“无源系统”。实际存在的无源系统的零输入响应随着时间的推移而逐渐地衰减为零。


定义。

换路后,电路中无独立的激励电源,仅由储能元件的初始储能维持的响应。也可以表述为,由储能元件的初始储能的作用在电路中产生的响应称为零输入响应(Zero-input response)。零输入响应是系统微分方程齐次解的一部分。

零状态响应。

如果系统的初始状态为零,仅由激励源引起的响应就被称之为该系统的“零状态响应”。一个原来没有充过电的电容器通过电阻与电源接通,构成充电回路。

那么电容器两端的电压或回路中的电流就是系统零状态响应的一个最简单的实例。系统的零状态响应一般分为两部分,它的变化形式分别由系统本身的特性和激励源所决定。

当系统是线性的,它的特性可以用线性微分方程表示时,零状态响应的形式是若干个指数函数之和再加上与激励源形式相同的项。

前者是对应的齐次微分方程的解,其中指数函数的个数等于微分方程的阶数,也就是系统内部所含“独立”储能元件的个数。后者是非齐次方程的特解。

对于实际存在的无源系统而言,零状态响应中的第一部分将随着时间的推移而逐渐地衰减为零,因此往往又把这一部分称之为响应的“暂态分量”或“自由分量“。

后者与激励源形式相同的部分则被称之为“稳态分量”或“强制分量”。

全响应。

电路的储能元器件(电容、电感类元件)无初始储能,仅由外部激励作用而产生的响应。在一些有初始储能的电路中,为求解方便,也可以假设电路无初始储能,求出其零状态响应,再和电路的零输入响应相加既得电路的全响应。

在求零状态响应时,一般可以先根据电路的元器件特性(电容电压、电感电流等),利用基尔霍夫定律列出电路的关系式,然后转换出电路的微分方程。

利用微分方程写出系统的特征方程,利用其特征根从而可以求解出系统的自由响应方程的形式;零状态响应由部分自由响应和强迫响应组成,其自由响应部分与所求得的方程具有相同的形式。

再加上所求的特解便得系统的零状态响应形式。可以使用冲激函数系数匹配法求解。

2. 二阶电路分析问题!

1、先根据题给条件确定故障是断路还是短路:两灯串联时,如果只有一个灯不亮,则此灯一定是短路了,如果两灯都不亮,则电路一定是断路了;两灯并联,如果只有一灯不亮,则一定是这条支路断路,如果两灯都不亮,则一定是干路断路。在并联电路中,故障不能是短路,因为如果短路,则电源会烧坏。
2、根据第一步再判断哪部分断路或短路。
例1:L1与L2串联在电路中,电压表测L2两端电压,开关闭合后,发现两灯都不亮,电压表有示数,则故障原因是什么?解:你先画一个电路图:两灯都不亮,则一定是断路。电压表有示数,说明电压表两个接线柱跟电源两极相连接,这部分导线没断,那么只有L1断路了。
例2、L1与L2串联,电压表V1测L1电压,V2测L2电压。闭合开关后,两灯都不亮。则下列说法正确的是:A、若V1=0,V2示数很大,则L1短路而L2正常;B、若V1=0而V2示数很大,说明L2都断路。
解:可能你会错选A。其实答案为B。首先根据题给条件:两灯都不亮,则电路是断路,A肯定不正确。当L2断路时,此时V2相当于连接到了电源两极上,它测量的是电源电压,因此示数很大。而此时L1由于测有电流通过,因此两端没有电压,因此V1的示数为零。

3. 求这个二阶电路分析怎么解

注意本题来中电感与电容并联,自所以二者电压始终相等(uC=uL=u),取u方向为上正下负,i与u为关联参考方向(从上流下),利用这个条件列方程。

1)以电感电流iL为变量(为方便输入简写为i),那么:电容电压uC=u=uL=Ldi/dt
电容电流iC=C/dt=LC(d²i/dt²)
R2支路电流=u/R2=(L/R2)(di/dt)
电源支路电流=(Um-u)/R1=(Um-Ldi/dt)/R1
针对电路上方节点列写KCL,得到:
(Um-Ldi/dt)/R1=i+LC(d²i/dt²)+(L/R2)(di/dt)
整理就可以得到关于i的二阶微分方程:
(d²i/dt²)+[R1R2/C(R1+R2)](di/dt)+(1/LC)i=Um/(LCR1)
列写特征方程就可以求出临界阻尼时的R2,篇幅限制此处从略。
2)以u为变量时,注意对于电感有:i=(1/L)∫udt
同理用KCL列方程,得到一个微积分方程,求导一次就转化为二阶方程 。同上理求解即可。

4. 电路分析基础二阶电路为什么是选学

电路图分析通常是有一定电路基础的人干的事那属于集成电路设计属于直流供电电路,不然很难看懂的,毫无基础的人根本看不懂的!还不如面对面直接教学你就懂了!

5. 这个二阶电路怎么解

直接解微分方程恐怕大家都忘记了(解一阶的还行),二阶电路一般用运算专法求解,L等效为运算阻抗Ls与L*i(0)串联属,C等效为1/Cs与u(0)/s串联。然后当普通电路计算出U(s),查表得Laplace反变换,得u(t)。如果还不会,就翻翻书复习一下吧。

6. 基础电路如何区分一阶电路和二阶电路

在一个电路简化后(如电阻的串并联,电容的串并联,电感的串并联化为一个元件),只含有版一个电容或电感元权件(电阻无所谓)的电路叫一阶电路。主要是因为这样的电路的Laplace等效方程中是一个一阶的方程
一阶和二阶的区别
一阶电路里有一个电容

一个电感。
二阶电路里有一个电容和一个电感。
简单的讲,一阶电路里有一个储能元件,可以是电容也可以是电感。
二阶电路里有两个储能元件,
可以都是电容也可以都是电感,也可以是一个电容、一个电感。
一阶电路需要解一阶微分方程
二阶电路需要解二阶微分方程

7. 求解二阶电路

二阶电路分类
零输入响应
系统的响应除了激励所引起外,系统内部的"初始状态"也可以引起系统的响应。在"连续"系统下,系统的初始状态往往由其内部的"储能元件"所提供,例如电路中电容器可以储藏电场能量,电感线圈可以储存磁场能量等。这些储能元件在开始计算时间时所存储的能量状态就构成了系统的初始状态。如果系统的激励为零,仅由初始状态引起的响应就被称之为该系统的"零输入响应"。一个充好电的电容器通过电阻放电,是系统零输入响应的一个最简单的实例。系统的零输入响应完全由系统本身的特性所决定,与系统的激励无关。当系统是线性的,它的特性可以用线性微分方程表示时,零输入响应的形式是若干个指数函数之和。指数函数的个数等于微分方程的阶数,也就是系统内部所含"独立"储能元件的个数。假定系统的内部不含有电源,那么这种系统就被称为"无源系统"。实际存在的无源系统的零输入响应随着时间的推移而逐渐地衰减为零。
定义
换路后,电路中无独立的激励电源,仅由储能元件的初始储能维持的响应.
也可以表述为,由储能元件的初始储能的作用在电路中产生的响应称为零输入响应(Zero-input response).
零输入响应是系统微分方程齐次解的一部分。
零状态响应
如果系统的初始状态为零,仅由激励源引起的响应就被称之为该系统的"零状态响应"。一个原来没有充过电的电容器通过电阻与电源接通,构成充电回路,那么电容器两端的电压或回路中的电流就是系统零状态响应的一个最简单的实例。系统的零状态响应一般分为两部分,它的变化形式分别由系统本身的特性和激励源所决定。当系统是线性的,它的特性可以用线性微分方程表示时,零状态响应的形式是若干个指数函数之和再加上与激励源形式相同的项。前者是对应的齐次微分方程的解,其中指数函数的个数等于微分方程的阶数,也就是系统内部所含"独立"储能元件的个数。后者是非齐次方程的特解。对于实际存在的无源系统而言,零状态响应中的第一部分将随着时间的推移而逐渐地衰减为零,因此往往又把这一部分称之为响应的"暂态分量"或"自由分量";后者与激励源形式相同的部分则被称之为"稳态分量"或"强制分量"。
全响应
电路的储能元器件(电容、电感类元件)无初始储能,仅由外部激励作用而产生的响应。
在一些有初始储能的电路中,为求解方便,也可以假设电路无初始储能,求出其零状态响应,再和电路的零输入响应相加既得电路的全响应。
在求零状态响应时,一般可以先根据电路的元器件特性(电容电压、电感电流等),利用基尔霍夫定律列出电路的关系式,然后转换出电路的微分方程;利用微分方程写出系统的特征方程,利用其特征根从而可以求解出系统的自由响应方程的形式;零状态响应由部分自由响应和强迫响应组成,其自由响应部分与所求得的方程具有相同的形式,再加上所求的特解便得系统的零状态响应形式。可以使用冲激函数系数匹配法求解。

8. 请问一阶电路与二阶电路的区别

一阶电路里有一个电容 或 一个电感。
二阶电路里有一个电容和一个电感。
简单的讲,一阶电路里有一个储能元件,可以是电容也可以是电感。
二阶电路里有两个储能元件, 可以都是电容也可以都是电感,也可以是一个电容、一个电感。
一阶电路需要解一阶微分方程
二阶电路需要解二阶微分方程

9. 如何将图中的二阶电路,拆开成两个一介电路计算

看图

阅读全文

与二阶电路相关的资料

热点内容
上海家电维修公司 浏览:111
航空维修1a检是指什么 浏览:372
消防水池挖土清单量怎么计算 浏览:239
小米5a被摔黑屏维修多少钱 浏览:530
海尔临桂售后维修点 浏览:513
预防性维修主要有哪些 浏览:830
芦苇漂如何做防水漆 浏览:209
租房期间房东不维修空调怎么办 浏览:847
怎么能买到真正的红木家具 浏览:931
上海实木家具订制 浏览:127
实体店买完家电什么时候送货 浏览:745
定制家具什么牌子好记 浏览:502
怎么用硅藻泥翻新 浏览:599
车间维修费账务处理 浏览:924
家具回潮不合怎么办 浏览:645
不防水的手表进水了应该怎么办 浏览:150
面包车翻新一下需要多少钱 浏览:892
雅丽美家具 浏览:764
前锋和万和热水器维修电话 浏览:788
壁山二手家具市场怎么去 浏览:894