❶ 电子时钟电路板上的芯片底座没安装上,直接将芯片安装在电路板上。但是电子时钟正常工作。漏装了会怎么样
芯片插座只是方便拆装而已,并无其他作用。
❷ 电子闹钟电路板与设置设计图有吗
发给你了,标题为tony_sgt电子钟
❸ led数码显示电子钟工作原理,电路板的制作,原理图的绘制的实习报告
到我网络空间转转。然后联系我,就什么都解决了
❹ 电子钟摆以前用的正常更换电池后就不能工作了。根据电子钟摆电路画出下图模拟后不能正常震荡。怎么回事
可能脱焊了(换电池震荡),细心捡查焊点,注意BC基极与C2焊点。我有这教训。参考
❺ 电子钟原理图
留个EMAIL,我这有,不知合你用不
❻ 请教辉光管电子钟的电路版制作方法。
刀刻…………新手千万要先练!
❼ 高分求电子时钟电路图!
我截个图给你图好像传不上来要的话发E-mail给我[email protected]
#include<reg52.h>//52单片机头文件
#include<intrins.h>//包含有左右循环移位子函数的库
#defineuintunsignedint//宏定义
#defineucharunsignedchar//宏定义
sbitla=P2^6;//数码管段选锁存端
sbitwela=P2^7;////数码管位选锁存端
ucharcodetable[]={//数码管显示编码
0x3f,0x06,0x5b,0x4f,
0x66,0x6d,0x7d,0x07,
0x7f,0x6f,0x77,0x7c,
0x39,0x5e,0x79,0x71};
ucharcodepoint[]={
0xbf,0x86,0xdb,0xcf,
0xe6,0xed,0xfd,0x87,
0xff,0xef,0xf7,0xfc,
0xb9,0xde,0xf9,0xf1};
ucharct1,ct2,ct3,ct4,ct5,ct6;
voiddisplay(uchar,uchar,uchar,uchar,uchar,uchar);//函数声明
voiddelay(uint);
voidmain()
{EA=1;
TMOD=0x01;
ET0=1;
P0=0xff;
TH0=(65536-10)/256;
TL0=(65536-10)%256;
TR0=1;
ct1=ct2=ct3=ct4=ct5=ct6=0;
while(1);
}
voidstop()interrupt1
{TH0=(65536-10)/256;
TL0=(65536-10)%256;
ct1++;
display(ct6,ct5,ct4,ct3,ct2,ct1);
if(ct1==10)
{ct1=0;
ct2++;
}
if(ct2==10)
{ct2=0;
ct3++;
}
if(ct3==10)
{ct3=0;
ct4++;
}
if(ct4==10)
{ct4=0;
ct5++;
}
if(ct5==10)
{ct5=0;
ct6++;
}
if(ct6==10)
{ct6=0;
}
}
voiddisplay(ucharone,uchartwo,ucharthree,ucharfour,ucharfive,ucharsix)
{
wela=1;
P0=0xfe;
wela=0;
la=1;
P0=table[one];
la=0;
delay(1);
P0=0xff;
wela=1;
P0=0xfd;
wela=0;
la=1;
P0=table[two];
la=0;
delay(1);
P0=0xff;
wela=1;
P0=0xfb;
wela=0;
la=1;
P0=table[three];
la=0;
delay(1);
P0=0xff;
wela=1;
P0=0xf7;
wela=0;
la=1;
P0=point[four];
la=0;
delay(1);
P0=0xff;
wela=1;
P0=0xef;
wela=0;
la=1;
P0=table[five];
la=0;
delay(1);
P0=0xff;
wela=1;
P0=0xdf;
wela=0;
la=1;
P0=table[six];
la=0;
delay(1);
P0=0xff;
}
voiddelay(uintz)//延时子函数
{
uintx,y;
for(x=z;x>0;x--)
for(y=110;y>0;y--);
}
自己改时间
❽ 电子钟老式电路板哪里有卖
电子钟老式的电路其实非常简单的就是一个三极管组成的多谐振荡器定外。好一点的使用一个经侦来解决这个问题。所以说电路比较简单如果你能力很强的话可以利用洞洞板自制一块如果能力不强这种电路板基本上已经绝迹了可以试着从网上淘到二手的电路板因为月老的东西人们觉得价值越低或者说正电子产品更新速度很快没有人会珍惜的。一个厂家的甚至更新速度都是每半年或一两个月就一次所以说想买的同款的非常困难如果能力强的话最好自己的制作一个这样来既能够很好的理解电路也能培养自己能力为今后再出任何问题都能让你自己能够解决。
❾ 谁有数字电子钟的电路图
http://www.wsjx.zjwu.net/d/class/1081035-2090206/web/zonghe/6.htm
实验仪器、工具:
1. 5V电源(或实验箱)4个人合用1个。
2. 四连面包板1块。
3. 示波器2个(每班)
4. 万用表5个(每班)。
5. 镊子1把。
6. 剪刀1把。
六、实验器件
1. 网络线2米/人。
2. 共阴八段数码管6个。
3. CD4511集成块6块。
4. CD4060集成块1块。
5. 74HC390集成块3块。
6. 74HC51集成块1块。
7. 74HC00集成块4块。
8. 74HC30集成块1块。
9. 10MΩ电阻5个。
10. 500Ω电阻14个。
11. 30p电容2个。
12. 32.768k时钟晶体1个。
13. 蜂鸣器10个(每班)
七、设计过程的日程安排
6月28日
1. 分发仪器、工具、器件
2. 讲解总体设计的过程,明确数字钟实现的功能,由哪些相对独立的功能模块组成,各个模块之间互相联系,时钟信号传输路径、方向和频率变化。
3. 讲解面包板的结构和使用方法,连接导线的要点,包括导线剥线头、插线方法、要求,检查面包板,如面包板中的导电铜片变形或移位,更换导电铜片。
4. 七段数码引脚排列测试,验证每段显示为一个发光二极管,同时完成对每个数码管的检查。
6月29日~7月2日
分功能讲解各个模块功能实现原理、实现,搭建实际电路一个个验证。在接线时注意合理布线和接线的可靠性。
6月29日
a) 数码管的译码驱动电路接线、测试、译码器控制功能测试(手工输入测试电平)。
除了进一步熟悉原理外,主要练习接线合理布局,走线整齐、美观,用手指触动导线时也能正常工作。可以静态显示学号的后几位。然选一个可正常工作的译码、显示电路,分别测试译码器的3个控制引脚的作用。
6月30日
b) 晶体震荡电路接线、测试(用示波器测量4060输入时钟,每一路分频输出的频率)。
c) 5进制计数器接线,输入用4060的2Hz,输出用数码管显示。
7月1日
d) 10进制计数器接线、测试。
e) 6进制计数器接线、测试(在10进制基础上改)。
7月2日
f) 60进制计数器接线、测试。
g) 24进制计数器、测试(在60进制基础上改)。
h) 校时电路接线(用RS触发器实现锁定、防抖动功能),用示波器观察电路的信号选择功能。
7月5~7日
5. 在熟悉各个功能模块基础上,结合对总体框图的理解,设计总接线图。
6. 根据总接线图中各种元器件数量、连线,确定所有元器件布局。
7. 按以下顺序接线:晶体震荡、秒电路、分电路、时电路。
8. 如时间允许加接校时电路和报时电路(整点报时)。
7月8~9日
9. 写课程设计报告。
a) 设计的目的、要求。
b) 总体框图设计。
c) 功能模块设计(对所用元器件使用作一些说明)。
d) 总电路图设计。
e) 总结:遇到的问题和解决办法、体会、意见、建议等。
❿ 急求多功能数字钟的设计,要详细的制作过程,需要购买的元件以及电路板的详细电路图!!!
多功能数字钟设计一、
绪论 (一) 钟表的数字化给人们生产生活带来了极大的方便,而且大大地扩展了钟表原先的报时功能。诸如定时自动报警、按时自动打铃、时间程序自动控制、定时广播、定时启闭电路、定时开关烘箱、通断动力设备,甚至各种定时电气的自动启用等,所有这些,都是以钟表数字化为基础的。因此,研究数字钟及扩大其应用,有着非常现实的意义。
本系统采用石英晶体振荡器、分频器、计数器、显示器和校时电路组成。由LED数码管来显示译码器所输出的信号。采用了74LS系列中小规模集成芯片。使用了RS触发器的校时电路。总体方案设计由主体电路和扩展电路两大部分组成。其中主体电路完成数字钟的基本功能,扩展电路完成数字钟的扩展功能。论文安排如下: 1、绪论 阐述研究电子钟所具有的现实意义。 2、设计内容及设计方案 论述电子钟的具体设计方案及设计要求。 3、单元电路设计、原理及器件选择 说明电子钟的设计原理以及器件的选择,主要从石英晶体振荡器、分频器、计数器、显示器和校时电路五个方面进行说明。 4、绘制整机原理图 该系统的设计、安装、调试工作全部完成
二、设计内容及设计方案 (一)设计内容要求 1、设计一个有“时”、“分”、“秒”(23小时59分59秒)显示且有校时功能的电子钟。 2、用中小规模集成电路组成电子钟,并在实验箱上进行组装、调试。 3、画出框图和逻辑电路图。 4 、功能扩展: (1)闹钟系统 (2)整点报时。在59分51秒、53秒、55秒、57秒输出750Hz音频信号,在59分59秒时,输出1000Hz信号,音像持续1秒,在1000Hz音像结束时刻为整点。 (3)日历系统。 (二)设计方案及工作原理 数字电子钟的逻辑框图如图1所示。它由石英晶体振荡器、分频器、计数器、译码器显示器和校时电路组成。振荡器产生稳定的高频脉冲信号,作为数字钟的时间基准,然后经过分频器输出标准秒脉冲。秒计数器满60后向分计数器进位,分计数器满60后向小时计数器进位,小时计数器按照“24翻1”规律计数。计数器的输出分别经译码器送显示器显示。计时出现误差时,可以用校时电路校时、校分。
三、单元电路设计、原理及器件选择 (一)石英晶体振荡器 1、重要概念的解释 (1) 反馈:将放大电路输出量的一部分或全部,通过一定的方式送回放大电路的输入端。 (2) 耦合:是指信号由第一级向第二级传递的过程。 2、石英晶体振荡器的具体工作原理 石英晶体振荡器的特点是振荡频率准确、电路结构简单、频率易调整。它被广泛应用于彩电、计算机、遥控器等各类振荡电路中。它还具有压电效应:在晶体某一方向加一电场,晶体就会产生机械变形;反之,若在晶片的两侧施加机械压力,则在晶片相应的方向上将产生电场,这种物理现象称为压电效应。在这里,我们在晶体某一方向加一电场,从而在与此垂直的方向产生机械振动,有了机械振动,就会在相应的垂直面上产生电场,从而使机械振动和电场互为因果,这种循环过程一直持续到晶体的机械强度限制时,才达到最后稳定,这种压电谐振的频率即为晶体振荡器的固有频率。 用反相器与石英晶体构成的振荡电路如图2所示。利用两个非门G1和G2 自我反馈,使它们工作在线性状态,然后利用石英晶体JU来控制振荡频率,同时用电容C1来作为两个非门之间的耦合,两个非门输入和输出之间并接的电阻R1和R2作为负反馈元件用,由于反馈电阻很小,可以近似认为非门的输出输入压降相等。电容C2是为了防止寄生振荡。例如:电路中的石英晶体振荡频率是4MHz时,则电路的输出频率为4MHz。
石英晶体振荡电路 (二)分频器 1、8421码制,5421码制 用四位二进制码的十六种组合作为代码,取其中十种组合来表示0-9这十个数字符号。通常,把用四位二进制数码来表示一位十进制数称为二-十进制编码,也叫做BCD码,见表1。 表1 8421码 5421码 0 0000 0000 1 0001 0001 2 0010 0010 3 0011 0011 4 0100 0100 5 0101 1000 6 0110 1001 7 0111 1010 8 1000 1011 9 1001 1100 2、分频器的具体工作原理 由于石英晶体振荡器产生的频率很高,要得到秒脉冲,需要用分频电路。例如,振荡器输出4MHz信号,通过D触发器(74LS74)进行4分频变成1MHz,然后送到10分频计数器(74LS90,该计数器可以用8421码制,也可以用5421码制),经过6次10分频而获得1Hz方波信号作为秒脉冲信号。
分频电路 3、图中标志的含义 CP——输入的脉冲信号 C0——进位信号 Q——输出的脉冲信号 (三)计数器 秒脉冲信号经过6级计数器,分别得到“秒”个位、十位,“分”个位、十位以及“时”个位、十位的计时。“秒”、“分”计数器为60进制,小时为24进制。 1、60进制计数器 (1) 计数器按触发方式分类 计数器是一种累计时钟脉冲数的逻辑部件。计数器不仅用于时钟脉冲计数,还用于定时、分频、产生节拍脉冲以及数字运算等。计数器是应用最广泛的逻辑部件之一。按触发方式,把计数器分成同步计数器和异步计数器两种。对于同步计数器,输入时钟脉冲时触发器的翻转是同时进行的,而异步计数器中的触发器的翻转则不是同时。 (2)60进制计数器的工作原理 “秒”计数器电路与“分”计数器电路都是60进制,它由一级10进制计数器和一级6进制计数器连接构成,如图4所示,采用两片中规模集成电路74LS90串接起来构成的“秒”、“分”计数器。
60进制计数电路 IC1是十进制计数器,QD1作为十进制的进位信号,74LS90计数器是十进制异步计数器,用反馈归零方法实现十进制计数,IC2和与非门组成六进制计数。74LS90是在CP信号的下降沿翻转计数,Q A1和 Q C2相与0101的下降沿,作为“分”(“时”)计数器的输入信号,通过与非门和非门对下一级计数器送出一个高电平一(在此之前输出的一直是低电平0)。Q B2 和Q C2计数到0110,产生的高电平一分别送到计数器的清零R0(1), R0(2),74LS90内部的R0(1)和R0(2)与非后清零而使计数器归零,此时传给下一级计数器的输入信号又变为低电平0,从而给下一级计数器提供了一个下降沿,使下一级计数器翻转计数,在这里IC2完成了六进制计数。由此可见IC1和 IC2串联实现了六十进制计数。 其中:74LS90 可二/五分频十进制计数器 74LS04 非门 74LS00 二输入与非门
24进制计数器 小时计数电路是由IC5和IC6组成的24进制计数电路,如图5所示。 当“时”个位IC5计数输入端CP5来到第10个触发信号时,IC5计数器自动清零,进位端QD5向IC6“时”十位计数器输出进位信号,当第24个“时”(来自“分”计数器输出的进位信号)脉冲到达时,IC5计数器的状态为“0100”,IC6计数器的状态为“0010”,此时“时”个位计数器的QC5和“时”十位计数器的QB6输出为“1”。把它们分别送到IC5和IC6计数器的清零端R0(1)和R0(2),通过7490内部的R0(1)和R0(2)与非后清零,从而完成24进制计数。
24进制计数电路 (四) 译码与显示电路 1、显示器原理(数码管) 数码管是数码显示器的俗称。常用的数码显示器有半导体数码管,荧光数码管,辉光数码管和液晶显示器等。 本设计所选用的是半导体数码管,是用发光二极管(简称LED)组成的字形来显示数字,七个条形发光二极管排列成七段组合字形,便构成了半导体数码管。半导体数码管有共阳极和共阴极两种类型。共阳极数码管的七个发光二极管的阳极接在一起,而七个阴极则是独立的。共阴极数码管与共阳极数码管相反,七个发光二极管的阴极接在一起,而阳极是独立的。 当共阳极数码管的某一阴极接低电平时,相应的二极管发光,可根据字形使某几段二极管发光,所以共阳极数码管需要输出低电平有效的译码器去驱动。共阴极数码管则需输出高电平有效的译码器去驱动。 2、译码器原理(74LS47) 译码为编码的逆过程。它将编码时赋予代码的含义“翻译”过来。实现译码的逻辑电路成为译码器。译码器输出与输入代码有唯一的对应关系。74LS47是输出低电平有效的七段字形译码器,它在这里与数码管配合使用,表2列出了74LS47的真值表,表示出了它与数码管之间的关系
输 入 输 出 显示数字符号 LT(——) RBI(——-) A3 A2 A1 A0 BI(—)/RBO(———) a(—) b(—) c(—) d(—) e(—) f(—) g(—) 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 X 0 0 0 1 1 1 0 0 1 1 1 1 1 1 X 0 0 1 0 1 0 0 1 0 0 1 0 2 1 X 0 0 1 1 1 0 0 0 0 1 1 0 3 1 X 0 1 0 0 1 1 0 0 1 1 0 0 4 1 X 0 1 0 1 1 0 1 0 0 1 0 0 5 1 X 0 1 1 0 1 1 1 0 0 0 0 0 6 1 X 0 1 1 1 1 0 0 0 1 1 1 1 7 1 X 1 0 0 0 1 0 0 0 0 0 0 0 8 1 X 1 0 0 1 1 0 0 0 1 1 0 0 9 X X X X X X 0 1 1 1 1 1 1 1 熄灭 1 0 0 0 0 0 0 1 1 1 1 1 1 1 熄灭 0 X X X X X 1 0 0 0 0 0 0 0 8 (1)LT(——):试灯输入,是为了检查数码管各段是否能正常发光而设置的。当LT(——)=0时,无论输入A3 ,A2 ,A1 ,A0为何种状态,译码器输出均为低电平,若驱动的数码管正常,是显示8。 (2)BI(—):灭灯输入,是为控制多位数码显示的灭灯所设置的。BI(—)=0时。不论LT(——)和输入A3 ,A2 ,A1,A0为何种状态,译码器输出均为高电平,使共阳极数码管熄灭。 (3)RBI(——-):灭零输入,它是为使不希望显示的0熄灭而设定的。当对每一位A3= A2 =A1 =A0=0时,本应显示0,但是在RBI(——-)=0作用下,使译码器输出全为高电平。其结果和加入灭灯信号的结果一样,将0熄灭。 (4)RBO(———):灭零输出,它和灭灯输入BI(—)共用一端,两者配合使用,可以实现多位数码显示的灭零控制。 3、译码器与显示器的配套使用 译码是把给定的代码进行翻译,本设计即是将时、分、秒计数器输出的四位二进制数代码翻译为相应的十进制数,并通过显示器显示,通常显示器与译码器是配套使用的。我们选用的七段译码驱动器(74LS47)和数码管(LED)是共阳极接法(需要输出低电平有效的译码器驱动)。
译码显示电路 (五)校时电路 1、RS触发器基本RS触发器 R(—) S(—) Q Q(—) 说 明 0 1 1 0 1 1 0 0 0 1 0或1 1 1 0 1或0 1 置0 置1 保持原来状态 不正常状态,0信号消失后,触发器状态不定 2、无震颤开关电路 无震颤开关电路的原理:当开关K的刀扳向1点时,S(—)=0,R(—)=1,触发器置1。S(—)端由于开关K的震颤而断续接地几次时,也没有什么影响,触发器置1后将保持1状态不变。因为K震颤只是使S(—)端离开地,而不至于使R(—)端接地,触发器可靠置1。 当开关K从S(—)端扳向R(—)端时,有同样的效果,触发器可靠置0。从Q端或Q(—)端反映开关的动作,输出电平是稳定的。 3、校时电路的实现原理 当电子钟接通电源或者计时发现误差时,均需要校正时间。校时电路分别实现对时、分的校准,由于4个机械开关具有震颤现象,因此用RS触发器作为去抖动电路。采用RS基本触发器及单刀双掷开关,闸刀常闭于2点,每搬动一次产生一个计数脉冲,实现校时功能.