导航:首页 > 电器电路 > 电路傅里叶

电路傅里叶

发布时间:2022-01-14 19:53:58

⑴ 设计一个方波和三角波傅里叶分解验证的试验,要求电路图和原理简述。

用RLC串联谐振电路作为选频电路,对方波或三角波进行频谱分解。在示波器上显示这些被分解的波形,测量它们的相对振幅。我们还可以用一参考正弦波与被分解出的波形构成李萨如图形,确定基波与各次谐波的初相位关系。

实验原理图如下。这是一个简单的RLC电路,其中R、C是可变的。L一般取0.1H~H范围。

待分解的方波或三角波接在输入端ui,当ui的谐波频率与电路的谐振频率相匹配时,此电路将有最大的响应。谐振频率为:f0=1/2π√LC。这个响应的频带宽度以Q值来表示:Q=(√L/C)/R。当Q值较大时,在f0附近的频带宽度较狭窄,所以实验中我们应该选择Q值足够大,大到足够将基波与各次谐波分离出来。

如果我们调节可变电容C,在nf0频率谐振,输出uo就是频率为nf0的谐波。

⑵ 傅里叶变换如何应用于实际的物理信号

首先,我们从物理系统的特征信号角度来解释。我们知道:大自然中很多现象可以抽象成一个线性时不变系统来研究,无论你用微分方程还是传递函数或者状态空间描述。线性时不变系统可以这样理解:输入输出信号满足线性关系,而且系统参数不随时间变换。对于大自然界的很多系统,一个正弦曲线信号输入后,输出的仍是正弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的。也就是说正弦信号是系统的特征向量!当然,指数信号也是系统的特征向量,表示能量的衰减或积聚。自然界的衰减或者扩散现象大多是指数形式的,或者既有波动又有指数衰减(复指数形式),因此具有特征的基函数就由三角函数变成复指数函数。但是,如果输入是方波、三角波或者其他什么波形,那输出就不一定是什么样子了。所以,除了指数信号和正弦信号以外的其他波形都不是特征信号。怎么理解我所说的特征向量和特征信号这个名字呢?其实这来源于线性代数:我们知道矩阵A作用一个特征向量x可以用数学语言这样描述:那么系统作用一个特征信号用数学语言描述就是。形式结构相同,只是一个是有限长度的向量,另一个是无限长度的信号而已。既然是特征向量,我们就想能不能用特征向量来表示自然界的信号和一个物理系统呢?这样做的好处就是知道输入,我们就能很简单那的写出输出。我们来看一个实际的例子,击弦乐器——钢琴。琴键被小锤敲击后,产生声音。

⑶ 我想知道傅里叶分解的方法 分解电力系统中的谐波 如何完成的 看书我看不明白 不知可不可以讲详细一些 急求

你想的太天真了 通过软件滤除谐波目前的水平达不到

⑷ 傅里叶级数的应用和电路学。

通讯传上来的应该是A/D芯片的采样值,对于50Hz交流信号,它是正负都有的正弦波瞬时值,(负值应该是补码表示的),要得到有效值,可根据一周波内的采样个数和采样值,用离散的傅里叶变换,计算出50Hz频率的实部a1和虚部b1,再求出a1和b1的平方和,然后开方除以1.414就可以了。
离散的傅里叶变换公式在不好表示,你搜索一下网上的论文,有很多。
另外,离散的傅里叶变换还可以算出高次谐波值。

⑸ 大学电路,傅里叶级数

1、U=√[100^2+(100/√2)^+(40/√2)^]=125.7V
2、P=100x10+100x20x0.5x0.707+40x10x0.5x(-0.5)=1000+707-100=1607W
五次谐波无功率。

⑹ 傅里叶分析在电力系统的应用有哪些能举例子吗

一个主要的应用就是电力系统之中谐波分析。

传统的谐波分析理论基础是傅里叶分析,随着计算机、微处理器的广泛应用,数字技术在这一领域越来越多地被采用出现了离散采样的傅里叶变换(DFT),电力系统的谐波分析目前大多是通过该方法实现的。

电力系统谐波测试:

基于傅里叶变换的谐波测量。基于傅里叶变换的谐波测量是当今应用最多也是最广泛的一种方法。使用此方法测量谐波精度较高功能较多使用方便。

其缺点是需要一定时间的电流值,且需进行两次变换计算量大计算时间长,从而使得检测时间较长检测结果实时性较差。

而且在采样过程中当信号频率和采样频率不一致时使用该方法会产生频谱泄漏效应和栅栏效应使计算出的信号参数即频率、幅值和相位)不准确尤其是相位的误差很大无法满足测量精度的要求因此必须对算法进行改进加快测量数度。

(6)电路傅里叶扩展阅读:

基于DFT的谐波分析原理就是把时域信号变换到频域相当于使数据样本通过一个梳状滤波器各滤波器的中心频率恰好是各次谐波的中心点理论上只要满足这一条件就能保证各次谐波的准确测量。

电力系统中的电压与电流为周期函数且满足荻里赫利条件,因此可将电压和电流分解为傅里叶级数形式,从而可以求出基波分量以及各次谐波分量。

⑺ 二阶RC电路微分方程,时域,傅立叶变换频域

要理解信号频谱先理解周期信号可展开为傅里叶的级数。当周期信号f(t)展开为正弦及余弦求和形式时,展开式中同时含有二个变量,时间t和频率ω,不仅有ω还有2ω、3ω、4ω ···,级数展开式表明f(t)含有丰富的分立频谱,且t仍然存在。若信号为非周期,可将非周期信号视为周期为∞大的周期信号,并引入频谱密度函数,可由周期信号的傅氏级数推导出非周期信号的傅氏积分。因积分区间是(-∞ → ∞)对t积分,所以积分结果使t消失了,傅氏积分结果只剩一个变量ω,即f(t)→变为F(ω)。之所以称傅氏变换,不仅因函数形式有变换( f→F ),还因自变量也发生变换( t→ω )。f(t)称时域函数,F(ω)称频域函数,F(ω)揭示了f(t)包含的频率成份。比如直流信号E(t)的傅氏变换为δ(ω),实践意义: 只有特殊点ω=0处有信号存在,而ω≠0的所有频率范围无信号存在。再比如,冲激函数δ(t)的傅氏变换为常数E(ω),它是平行于ω轴的水平直线。现实意义: 一个冲激函数包含了从 ω=-∞ 到ω=∞ 全部频率!实验检验: 将导线一端接1.5Ⅴ电池正极,另一端不断地碰触负极,即发出一个个冲激信号。打开收音机电源开关,将调台旋钮放中波段任何频率位置,收音机总能收到冲激信号并发出"咔咔"声,正说明冲激信号包含了极宽的频带。

⑻ 有人有关于傅里叶分析在电力电子中应用的资料么

电网谐波来自于3个方面:
一是发电源质量不高产生谐波:
发电机由于三相绕组在制作上很难做到绝对对称,铁心也很难做到绝对均匀一致和其他一些原因,发电源多少也会产生一些谐波,但一般来说很少。
二是输配电系统产生谐波:
输配电系统中主要是电力变压器产生谐波,由于变压器铁心的饱和,磁化曲线的非线性,加上设计变压器时考虑经济性,其工作磁密选择在磁化曲线的近饱和段上,这样就使得磁化电流呈尖顶波形,因而含有奇次谐波。它的大小与磁路的结构形式、铁心的饱和程度有关。铁心的饱和程度越高,变压器工作点偏离线性越远,谐波电流也就越大,其中3次谐波电流可达额定电流0.5%。
三是用电设备产生的谐波:
晶闸管整流设备。由于晶闸管整流在电力机车、铝电解槽、充电装置、开关电源等许多方面得到了越来越广泛的应用,给电网造成了大量的谐波。我们知道,晶闸管整流装置采用移相控制,从电网吸收的是缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,显然在留下部分中含有大量的谐波。如果整流装置为单相整流电路,在接感性负载时则含有奇次谐波电流,其中3次谐波的含量可达基波的30%;接容性负载时则含有奇次谐波电压,其谐波含量随电容值的增大而增大。如果整流装置为三相全控桥6脉整流器,变压器原边及供电线路含有5次及以上奇次谐波电流;如果是12脉冲整流器,也还有11次及以上奇次谐波电流。经统计表明:由整流装置产生的谐波占所有谐波的近40%,这是最大的谐波源。
变频装置。变频装置常用于风机、水泵、电梯等设备中,由于采用了相位控制,谐波成份很复杂,除含有整数次谐波外,还含有分数次谐波,这类装置的功率一般较大,随着变频调速的发展,对电网造成的谐波也越来越多。
电弧炉、电石炉。由于加热原料时电炉的三相电极很难同时接触到高低不平的炉料,使得燃烧不稳定,引起三相负荷不平衡,产生谐波电流,经变压器的三角形连接线圈而注入电网。其中主要是2 7次的谐波,平均可达基波的8% 20%,最大可达45%。
气体放电类电光源。荧光灯、高压汞灯、高压钠灯与金属卤化物灯等属于气体放电类电光源。分析与测量这类电光源的伏安特性,可知其非线性十分严重,有的还含有负的伏安特性,它们会给电网造成奇次谐波电流。
家用电器。电视机、录像机、计算机、调光灯具、调温炊具等,因具有调压整流装置,会产生较深的奇次谐波。在洗衣机、电风扇、空调器等有绕组的设备中,因不平衡电流的变化也能使波形改变。这些家用电器虽然功率较小,但数量巨大,也是谐波的主要来源之一。

⑼ 关于大学电路的计算,好多时候在计算里面都出现了jw这个东西,我想知道他表示什么意思。

有一个叫傅里叶的人提出:

能将满足一定条件的某个函数表示成三角函数(内正弦和/或余弦函数)或者它们容的积分的线性组合

这个图比较形象

当然你还需要知道卷积的公式:

设:f(x),g(x)是R1上的两个可积函数,作积分:

可以证明,关于几乎所有的实数x,上述积分是存在的。这样,随着x的不同取值,这个积分就定义了一个新函数h(x),称为函数f与g的卷积,记为h(x)=(f*g)(x)。


jw和iw一样,是从频域角度分析的自变量

阅读全文

与电路傅里叶相关的资料

热点内容
旧家电处理厂家在哪里 浏览:937
电路图正负极 浏览:291
旧物翻新地砖怎么做 浏览:118
朗逸天窗漏水维修多少钱 浏览:455
十二伏发电机不发电如何维修 浏览:649
顾客买家具不加钱怎么办 浏览:117
楼房门口小家具不好弄怎么办 浏览:448
酒楼怎么翻新改造 浏览:843
家居瑞士 浏览:430
门电路延时 浏览:56
万和电器维修工 浏览:270
江苏隧道防水堵漏多少钱 浏览:300
伸缩缝铝材怎么打结构胶更防水 浏览:185
防水羽绒服用什么布料 浏览:953
小米保修邮寄过去没保修 浏览:940
网购维修东西怎么处理 浏览:279
液化气灶换点火器维修多少钱 浏览:1000
扬州小米售后维修点地址电话 浏览:368
厨房电器维修挣钱吗 浏览:292
金山家电综合维修怎么样 浏览:638