㈠ 在理论上,电子电路中振荡频率最高能达到多少
诚如你所言,除了自然光很多人工光源如激光、X线、还有LED、场致发光等等都是由电子电路结合固态器件、电真空器件产生的,这些算不算电子电路振荡频率呢?我想本质上应该算。
㈡ 什么是线圈振荡电路
能产生振荡电流的电路就叫做振荡电路。一般由电阻、电感、电容等元件和电子器件所组成。由电感线圈L和电容器c相连而成的LC电路是最简单的一种振荡电路。
振荡电路物理模型(即理想振荡电路)的满足条件:
①整个电路的电阻R=0(包括线圈、导线),从能量角度看没有其它形式的能向内能转化,即热损耗为零。
②电感线圈L集中了全部电路的电感,电容器C集中了全部电路的电容,无潜布电容存在。
③LC振荡电路在发生电磁振荡时不向外界空间辐射电磁波,是严格意义上的闭合电路,LC电路内部只发生线圈磁场能与电容器电场能之间的相互转化,即便是电容器内产生的变化电场,线圈内产生的变化磁场也没有按麦克斯韦的电磁场理论激发相应的磁场和电场,向周围空间辐射电磁波。
原理:
充电完毕(放电开始):电场能达到最大,磁场能为零,回路中感应电流i=0。
放电完毕(充电开始):电场能为零,磁场能达到最大,回路中感应电流达到最大。
充电过程:电场能在增加,磁场能在减小,回路中电流在减小,电容器上电量在增加。从能量看:磁场能在向电场能转化。
放电过程:电场能在减少,磁场能在增加,回路中电流在增加,电容器上的电量在减少。从能量看:电场能在向磁场能转化。
在振荡电路中产生振荡电流的过程中,电容器极板上的电荷,通过线圈的电流,以及跟电流和电荷相联系的磁场和电场都发生周期性变化,这种现象叫电磁振荡。
㈢ 振荡器的电路图
如图所示为考毕兹振荡抄器电路。它带一个基频率晶体,其频率为1499kHz,晶体SJT并接在电容C2、C3两端。射极分压电阻R2、R3提供基本的反馈信号,反馈受电容分压器C2、C3的控制。晶体SJT起振工作后输入给三极管VT基极l499kHz正弦波信号,由射极输出器VT输出,经耦合电容C4送入电位器RP输出。电阻R1把18V电压降压供给VT一个合适的偏置电压,适当调节电阻R1可使考毕兹振荡器工作在软激励状态。电阻R4、电容C5为专耦电路。调节电容C1,可将振荡器精密的微调在工作频率上。调节电位器RP,可改变振荡信号输出电平的大小。
元器件选择:电容Cl为5~20p,C2为51p,C3、C6为100p,C4为15p,C5为100μ/32V。电阻Rl为62kΩ,R2为300Ω,R3为2.4kΩ,R4为360Ω,1/2W,R5为15kΩ。电位器RP选4.7kΩ。三极管VT为3DGl20C,65≤β≤115。稳压二极管VD用2CW58。晶体SJT选用JA5B型-1499Hz。
㈣ 超声波加湿器电子振荡电路
织布厂还是不要用超声波的了,电路不是很复杂,但是雾化器单片的加湿量太小(约300ML),要做到30KG,约要100个片子,很麻烦,光是电源用的变压器就够你受的了,每一片都要功率约35W的48V供电,你可以简单算一个,自己做的话要有多麻烦?另外雾往外输送也是个问题。如需详细电路资料给我留言。QQ793401772
㈤ 震荡电路是什么
应该是振荡电路吧?
振荡电路是将电源的直流电能,转变成一定频率的交流信号的电路。作用是产生交流电振荡,作为信号源。
振荡电路可以是LC回路,也可以是RC回路、还可以是晶振。
一般中、高频振荡器用LC振荡电路,频率高,LC元件值比较小,体积也小,有良好的选频特性,输出波形比较纯。
在低频振荡电路中,频率低,所用的LC元件值很大。这时用的电感线圈体积很大,铁芯线圈的性能也差,用RC振荡电路就比较合适。
振荡器电路,就是在放大器上加上正反馈电路组成。
在要求频率很稳定的振荡电路中,就要用石英晶体振荡器,这在电脑、电子表,机顶盒,MP3、MP4,手机等使用已极其普遍。
㈥ 振荡电路的作用,
振荡电路的作用是产生信号电压,包含有正弦波振荡器和其他波形振荡器。其结构特点是没有对外的电路输入端,晶体管或集成运放的输出端与输入端之间有一个具有选频功能的正反馈网络,将输出信号的一部分正反馈到输入端以形成振荡。
例如调整放大器时,用一个"正弦波信号发生器"和生一个频率和振幅均可以调整的正弦信号,作为放大器的输入电压,以便观察放大器输出电压的波形有没有失真,并且量测放大器的电压放大倍数和频率特性。
这种正弦信号发生器就是一个正弦波振荡器。它在各种放大电路的调整测试中是一种基本的实验仪器。在无线电的发送和接收机中,经常用高频正弦信号作为音频信号的"载波",对信号进行"调制"变换,以便于进行远距离的传输。
高频振荡还可以直接作为加工的能源,例如焊接半导体器件引脚时使用的"超声波压焊机",就是利用60KHz左右的正弦波(即超声波)作为焊接的"能源"。
(6)电子振荡电路扩展阅读
振荡电路一般由电阻、电感、电容等元件和电子器件所组成。由电感线圈l和电容器c相连而成的lc电路是最简单的一种振荡电路,其固有频率为f=[sx(]1[]2πlc。
一种不用外加激励就能自行产生交流信号输出的电路。它在电子科学技术领域中得到广泛地应用,如通信系统中发射机的载波振荡器、接收机中的本机振荡器、医疗仪器以及测量仪器中的信号源等。
振荡器的种类很多,按信号的波形来分,可分为正弦波振荡器和非正弦波振荡器。正弦波振荡器产生的波形非常接近于正弦波或余弦波,且振荡频率比较稳定;非正弦波振荡器产生的波形是非正弦的脉冲波形,如方波、矩形波、锯齿波等。非正弦振荡器的频率稳定度不高。
在正弦波振荡器中,主要有LC振荡电路、石英晶体振荡电路和RC振荡电路等几种。这几种电路,以石英晶体振荡器的频率最稳定,LC电路次之,RC电路最差。
RC振荡器的工作频率较低,频率稳定度不高,但电路简单,频率变化范围大,常在低频段中应用。 在通信、电视等设备中,振荡器正逐步实现集成化,这些集成化正弦波振荡器的工作原理、电路分析等原则上与分立元件振荡电路相一致。
㈦ 模拟电子中振荡电路是什么意思
振荡电路就是一个能够产生与输出周期信号的电路,这样的振荡电路,存在于模拟及数字电路中;
㈧ 请教网友关于电子技术中的振荡电路的
你说的很对,振荡电路的雏形就是反馈电路。可以说它是对反馈电路自激振荡的一种利用。我们都知道,但在设计反馈电路的时候,如果反馈深度设计不当,电路将产生自激振荡。但是如果,我们修改电路,让它按照我们所需求的目标振荡(也就是去产生一定频率的波形信号),那么就构成了振荡器了。
现在从两个方面来解答你的问题:
1、自激振荡 放大电路中引入负反馈,可以使电路的许多性能得到改善, 并且反馈深度越深,改善效果越好。但是对于多级放大电路而言, 反馈深度过深,即使放大电路的输入信号为零, 输出端也会出现具有一定频率和幅值的输出信号,这种现象称为放大电路的自激振荡,它使放大电路不能正常工作,失去了电路的稳定性。
自激振荡产生的原因�
负反馈放大电路的闭环放大倍数为 AF=A/1+AF 在中频段,由于AF>0,相角φA+φF=2nπ(n=0,1, 2,…),输入信号Xi和反馈信号Xf同相,因此净输入量是两者的差值,即Xi’ = Xi-Xf,此时电路实现负反馈功能。但是,在低频段和高频段, �AF将产生附加相移。在低频段,由于耦合电容和旁路电容的作用, �AF将产生超前相移;在高频段, 由于半导体器件存在极间电容, AF�将产生滞后相移。假设在某一频率f0下, AF的附加相移达到180°,即φA+φF=(2n+1)π.注意,此时Xi和反馈信号Xf由以前的同相,就变为了反向,此时净输入量是两者的和(减负,相当于加正了嘛),即Xi’= Xi+Xf。所以此时,输出信号将没反馈一次,就加强一次。最极端的情况就是,只是电路自身的噪声信号(没有故意加输入信号)给了个启动信号的话,就会有不断的信号输出了。此时,我们就称电路产生自激振荡了。
2、振荡电路。因我无权限附图,你可以直接参考书上的RC串并联振荡电路。它是由运放构成的正反馈放大电路,RC选频网络,还有稳幅电路3部分构成。正反馈部分,就是用来产生自激振荡的,而选频网络就是用来确定f0的, 我在1中分析了,只有当f0时, AF的附加相移才达到180°,也才能使 Xi和Xf由同相变反向,进而产生自激的。稳幅也就是通过负反馈使得输出信号的幅度不至于被一次次加大,而是维持我们需要的指标。
因此,要掌握好振荡电路,应该把负反馈的自激振荡部分和它联系起来学习。概括起来说,振荡电路,就相当于我们设计了一个按我们需要的频率做自激振荡而且又被我们控制了幅度的自激振荡吧。
关于,你提到的能量如何维持的问题,那是我们电路的直流电源供给的了,能量总是守恒的。
直流电源是给整个电路(里面的运放芯片,电阻等等)供电的,它是一直没有撤销的而且也不能撤销的了,你看见过没有电就可以一直工作的电路吗?主要你是把输入信号和直流电源混淆了哈,不是直流电源加在输入端在提供输入信号哦。这个你应该拿着电路图对照看下,是因为直流电源的存在,电路才有电流流动,是经过反馈等环节的处理而成为输入信号,进入到运放的吧。我们说到过自激振荡的时候,就是输入信号为0(相当于你所说的输入信号撤销了)但是,此时供给电路的直流电压源是始终在的呢。没有它你的整个线路中就没有能量供给了。即便有所谓的噪声启动信号,那也很快就会都消逝了,都会耗尽在导线及电阻的发热上面。
如果还不清楚的话,可以继续问,我会再给你简答的。我以前研究过这个,你的分我挣定了哦,呵呵。
㈨ 振荡电路是由哪几个基本的电子构成的
振荡电路可以是由电感、电容为选频元件的LC振荡电路,也可以是由电阻、电容为选频元件的RC振荡电路。
振荡电路出选频电路外,还常有基本放大环节、正反馈网络和稳幅环节等构成。