① 大家看看我的电路图怎么优化
稳压管是并联使用的
不是你 这样串联的
U2前滤波必须加电容并联,
② 如何优化RF电路设计
RF电路篇:降低功放耗电量,关注包络跟踪
在用于智能手机通信的无线电路(RF电路)中,旨在降低耗电量的技术开发也十分活跃。这是因为,就峰值功率而言,仅RF电路就会消耗2W左右的电力,所以还存在着很大的削减空间。
RF电路中消耗电力最大的是发送部用来放大信号的功率放大器(PA)。在终端和基站处于远距离等情况下时,信号峰值会在瞬间消耗1.5W左右的电力(图18)。因此在RF电路中,如何削减PA的耗电量成了关注的焦点。
图18:RF电路的对策
智能手机的RF电路中,耗电量最大的是功率放大器(PA)。例如LTE在以23dBm输出时,仅功率放大器就会瞬间消耗1.5W左右的电力(a)。因此,要想降低RF电路的耗电量,提高PA的效率以及通过周边技术降低损耗至关重要(b)。(图18:(a)由本刊根据澳大利亚新南维尔士大学和英国Nujira公司的资料制作)
削减耗电量的关键在于提高PA的功率附加效率*和降低周边技术的电力损耗(图18(b))。
*功率附加效率(PAE:power added efficiency)=表示PA的实际输出信号电力(从输出信号电力中减去输入信号电力的值)与电源加载的直流电力的比率。
PA的功率附加效率因采用的通信方式而异。比如,用于GSM方式通信电路的PA有望达到50%以上的效率,而用于W-CDMA方式的PA最大为40%左右,至于LTE由于尚未进行充分优化等,最大效率只有35%左右。也就是说,LTE终端中用于PA的输入功率有65%以上被浪费了(化为热量等)。
多频阻碍效率提高
今后将成为主流的LTE方式智能手机的PA要想提高功率附加效率无比困难。理由在于多频化的推进。
LTE方式的智能手机为了能在世界各地使用,标配了国际漫游功能。因此,RF电路必须支持多个频率(多频化)。如果PA和滤波器等RF电路的个别部件根据支持频率的数量来安装,部件个数就会增加,导致安装面积增大,成本也会增加。为了避免这种情况,LTE终端的主流是利用可在一个封装中支持多个频率的多频产品(图19)。“很多终端厂商打算在RF电路中以多模和多频部件的使用为主”(村田制作所执行董事、模块事业本部副本部长中岛规巨)。
图19:通过多频产品削减安装面积
采用多频型功率放大器(PA)的话,即使支持的频带数增加,安装面积也不会增加。(本站根据三菱电机的资料制作)
村田制作所的多频型PA与单一频带(单频)产品相比,不容易提高效率。所支持的放大频带数量越多,功率附加效率越难以提高,二者属于此消彼长(Trade-off)的关系 注1)。
注1) 多频型PA一般采用广带型放大电路,与特定频带具备放大特性的单频型相比,效率值容易下降。
包络跟踪技术亮相
作为提高LTE终端多频型PA效率的技术,备受关注的是对输入PA的电源电压进行细微控制的“Envelope Tracking(包络跟踪)”。
包络跟踪是对PA的电源电压进行极其细微的动态调节的技术。此前一直利用以发送信号的1个时隙为单位切换PA电源电压的方法“Average Power Tracking”。而包络跟踪则追踪信号振幅(信号电力),以更小的时隙切换电源电压,由此在输出时会选择效率最高的电源电压进行发送(图20)。
图20:追踪信号波形,细微控制电压
无电压控制、Average Power Tracking以及Envelope Tracking时的时间轴信号波形示意图。粉线表示电压值水平,粉色区域表示发热(多余的电力消耗)。(图由本刊根据Nujira公司的资料制作)
PA的功率附加效率对电源电压和发送电力有依赖性,因此如果能根据发送电力切换电源电压,在理想状态下能一直选择最大效率点,可以减少多余的电力消耗。通过组合使用该技术,弥补了多频型PA效率降低的缺点。
包络跟踪有多种实现方法,最常用的是从输入信号波形中提取振幅的形状,然后将所需的偏置信号输入PA的方法(图21)。此时采用的旨在加载最佳偏压的控制IC由欧美风险企业开发。
图21:包络跟踪的控制电路
从输入信号波形生成偏置信号波形,利用偏置信号波形对输入功率放大器(PA)的电源电压进行微细控制。根据PA的输出改变电源电压,由此能以最高效率的电压驱动。(图由本刊根据三菱电机的资料制作)
大幅削减耗电量
例如,如果使用英国Nujira公司供货的包络跟踪用控制IC,耗电量可较未使用时削减40%~55%(图22)。“与W-CDMA等相比,动态范围较大的LTE能进一步降低耗电量”(Nujira公司现场应用经理Tamas Vlasits)。
图22:包络跟踪的效果
Nujira公司的包络跟踪控制IC“NCT-L1100”封装在4mm见方的BGA等中(a)。W-CDMA、HSUPA及LTE在23dBm输出时的RF电路耗电量。导入包络跟踪技术,大幅降低了PA的耗电量。LTE的话可削减55%的耗电量(b)。(图由本刊根据Nujira公司的资料制作)
包络跟踪用控制IC插入PA和RF收发器IC(或基带处理LSI)之间使用。控制IC通过符合MIPI(Mobile Instry Processor Interface)标准的芯片间接口等控制 注2)。
注2) MIPI Alliance于2011年11约成立了旨在制定包络跟踪专用接口标准的工作组。预定制定从RF收发器IC或基带处理LSI收发包络信号的信号线标准。
在包络跟踪用控制IC领域另一家较受关注的公司是美国Quantance。该公司将自主开发的技术命名为“qBoost”,计划与PA厂商合作扩大技术的应用范围。该公司称,利用该技术可将功率附加效率提高至50%左右。
Quantance已经与三菱电机展开了合作。三菱电机前不久发布了尺寸仅3mm见方、可放大6频带的PA,设想与包络跟踪技术组合使用。组合使用后可确保最大40%的效率(图23)。
图23:支持6个频带,可确保40%的效率
三菱电机开发的GaAs制PA尺寸只有3mm×3mm×1mm(a)。功率附加效率在1.7G~2GHz的6个频带中最大可确保40%(b)。(图由本刊根据三菱电机的资料制作)
将来计划配备于RF IC
包络跟踪技术不仅可以利用上述专用控制IC来支持,在不久的将来还计划嵌入RF收发器IC等使用。富士通半导体预定2012年5月上旬开始样品供货配备包络跟踪控制功能的多模及多频型RF收发器IC“MB86L11A”。这是业界首款配备包络跟踪控制功能的RF收发器IC。此外,美国高通公司等从事智能手机芯片组业务的大企业好像也都在考虑标配该技术。
不过,包络跟踪也存在课题。由于电源电压高速切换,信号的失真特性会劣化,相邻通道的漏电功耗可能会增大。作为解决对策,瑞萨电子通过提前使发送信号失真(预失真)减轻了劣化,瑞萨电子认为“需要探讨类似的补偿技术”。
提高元件自身的效率
还有厂商打算通过提高PA元件自身的特性来提高效率,以降低耗电量。例如美国威讯联合半导体(RF Micro Devices)于2012年2月底发布了可将LTE发送时的功率附加效率提高至42~44%左右的PA“ultra-high efficiency PA” 注3)。
注3)可用于放大W-CDMA的频带1、2、3、4、5、8,以及LTE的频带4、7、11、13、17、18、20、21。
另外,富士通半导体2011年底开始供货多频型PA,通过在PA元件中利用与富士通研究所共同开发的高耐压晶体管“EBV-Transistor”提高了效率。这是一款利用CMOS技术设计的PA,能够通过一个封装支持W-CDMA和HSPA利用的3个频带的放大(图24)。据富士通半导体介绍,使用频率较高的中低输出时的效率非常高。
图24:富士通的CMOS制PA支持3个频带
富士通半导体开发的CMOS制PA利用一枚芯片实现了W-CDMA/HSPA的频带Ⅰ(2.1GHz频带)、频带Ⅴ(850MHz频带)、频带Ⅸ(1.7GHz频带)的放大。尺寸为4mm×3.5mm×0.7mm。
减少反射波降低耗电量
另外还有不在PA上下工夫,而是通过导入RF电路的周边技术来降低电力损耗的案例,比如插入隔离器来减少反射波。
隔离器是仅通过单向信号的部件,如果在PA和天线之间插入隔离器,可以阻止从天线侧逆流进入的信号。
最近的智能手机天线一般设置在机身侧面等,天线阻抗会随着用户握持方法的不同而大幅变动。因此,RF发送部会产生阻抗不匹配现象,从而导致PA的输出信号作为反射波返回,这会使S/N恶化。
反射越多,PA的发送电力越大,所以会导致耗电量的增加。插入隔离器可以去除反射波,从而降低耗电量。
使用隔离器会导致部件数量增加。因此,海外的终端厂商大都不愿意采用。不过开发商期待,随着对降低RF电路耗电量的关注度越来越高,采用的海外终端厂商也会增加。比如,隔离器开发企业之一村田制作所开发出了将PA、滤波器以及隔离器(稳定器)收纳在一个封装内的PA模块,并且已开始供货(图25)。该公司通过集成化缩小了产品尺寸,并以此为优势向日本国内外的终端厂商积极促销。
③ 电路能否优化
下图是你做的所谓优化??
如果 DC_IN与VCC_50的电压值相近就可以,相差超过3V以上就不可以了;电压高的那个场效应管就有可能关不死而仍然处在弱导通状态;
④ 如何对所设计的集成电路进行优化设计
首先应看是数字集成电路还是模拟集成电路的优化
如果是数字集成电路,通常是对功耗和速度进行优化,主要是对晶体管尺寸和门电路结构进行调整
如果是模拟集成电路,就要看你的设计目标是什么了,模拟的性能参数有很多,增益、功耗、噪声等等,他们之间都是存在折衷关系的,不可能同时都达到最好,要根据你的设计目标进行优化
⑤ 从哪几方面优化电路设计
1.客户需求分析:我觉得这点很重要,往往很多工程师都不注意,冲冲忙忙设计,做完了才发现设计出来的东西不是客户要的东西,或没完全达到客户的要求,所以客户需求分析到设计说明书一定要做细,把每个需求弄清楚。包括产品电压、功耗、温升、认证等。
2.原理设计:在满足客户需求前提下,检查原理图中每个功能模块的设计参数,满足参数的前提下检查每个元器件品牌型号,保证参数前提下减少冗余,选择更低价格、更方便采购的品牌和型号,以提高产品价格和假货速度方面的竞争力。
3.PCB布局:要根据布局规则和信号完整性逐条检查。
4.结构检查:设计的板子能否顺利装配到外壳里,往往是被很多电子工程师忽略的事情,设计出来的东西通常无法装配到外壳里,或外壳空间太小、没有考虑散热等。
⑥ 电路创新设计高手给几个方案
那就要用完全不延时的、灵敏度超前、手感空前的下一代键盘,国际市场上还没有商品,终将要出现!
如果你能将其送上2010年上海世博会、每年的德国汉诺威信息展览会、每年8月份德国柏林国际消费电子展IFA,可以借用。
中国人在1982年提出的,本人下岗,就不坚持了,昨天还有西洋人来参观过,向他展示了核心图纸,全模拟计算机控制的,关键材料国产。
这就是宣传奥运,展现中国的实力!
这个键盘吧
楼上说的是1980年时期的IBM公司286型、386型号计算机用的键盘,是机械键盘,当时都是原装进口,后来国内基本未生产过,现在有少量走私的旧机械键盘,比普通键盘要贵很多,其结构合理,制作成本高,旧的可以是50元一个,新的一般要上千元为公道。
相比之下,现在的键盘都是低成本制造,就普通的花胶(指的是透明或半透明和软的胶,硅橡胶就是其中一种,薄膜接触键盘内部用的结构件,产生键向上复位弹力,将所有的键结构连接在一起)而已。
昨天,一个有长期工作经验的斯坦福大学毕业的硕士到本人家里来作客,这个西洋人能明白本人的下一代键盘的性能。
你上网络检索就是了。
国际上还没有商品,其造价一万元还下不来,作为奢侈品合适,是中国创新核心价值的体现,是创意设计和产业结构转型的范例,是民族精神的象征,是独立创新的象征,具有明确的和不可替代的政治含义。
打的是品牌,就是要强势展现,要做高端市场。
国内的联想、腾讯、新浪等等CEO自己不做,本人也不会认真做这些活,点到就可以了。
如果有人能将其送上2010年上海博览会、每年的德国汉诺威信息展览会、每年8月份德国柏林国际消费电子展IFA,本人可以自费制造,国内的专用键盘制造商和普通键盘制造商都参加这些展览会,他们只关心订单,无所谓企业文化,本人何必认真?
那个西洋硕士能当场看懂本人的键盘控制模拟计算机的局部单元部分,现在国内名牌大学的对口专业博士后却不懂,本人何必较真?
如果毛泽东、周恩来在世,一定有生机。现请示侨办主任。
西洋人的精髓,亚洲人能吃透吗?
他宣传了中国在钢琴上的创新了吗?
他将中国人制造的原型带到国际音乐会上和国际乐器展览会上了吗?
是否爱国、是否坚持原则、有无民族气节,一测试就暴露无遗了!
这要产生键盘完整的标准、新的演奏方法、律制、音效的变革等等。
本人对到中国的外国乐器人士、工程技术人员面对面地宣传中国的独创,叫板欧美人士!
钢琴的质量主要取决于哪个零件的质量
这是整体质量所决定的。
各部分的木材处理的工艺、费用。
基本结构就决定了音质,例如音板、琴弦、钢骨架、梁的结构方式,这就是西方工业发达国家的工业基础、文化积淀,企业的核心技术,不是实行各种技术标准,花上2万元一天请西方的钢琴技师就能学到的,例如,国际上有钢琴技师协会,那里的技师都花钱请来,而真本事是学不到的。
中国人都在国外钢琴企业见到人家的击弦机构、键盘是在消声室内调整的,国内就完全没有这个必要,技师也没有这个水平和耐心,而且中国加工质量也犯不着再修整。
就算是国外生产的钢琴,你踩下踏板,压制弦的振动,都能听见击弦机构、键盘的冲击噪音,你平时不在意而已。而且,不同的击键力度和击键方式,这个噪音的特点和大小也在变化之中。
现在中国的琴锤国家标准就十分简单,更不要提击弦机构、键盘的标准了,如何制定完善的标准,研制出完整的检测仪器,这就要看××××****洋&&&&同志的改革魄力了。
⑦ 怎样设计电路方案
分两步:
1、掌握基础的电子电路理论,最基础的书要看,比如《模拟内电子电路》、《数容字电子电路》。
2、然后就是多看多积累一些基础的电路,基础电路容易理解,看多了之后,设计电路方案就像搭积木一样,非常简单。
这篇文章做了论述《设计手势控制的LED灯:掌握基础电路后,设计电路就是搭积木》
⑧ pspice 电路优化问题
搭建电路需要找到这些元件对应的库,将库添加进工程文件然后就能搭电路了。内。。貌似只用analog、容special库和变压器的库。。。。。。
楼主是想通过改变电容值让输出电压达到最大对吗?
这个用全局扫描就可以了,
楼主先在special库里调出来PRAM,然后把电容换成Cbreak,再将电容参数值设置为全局变量Cv。在PRAM里添加Cv变量,对全局参数Cv进行扫描,然后看输出随Cv的变化情况,应该能找到最优值。
如果只是想微调电容进行优化,用PspiceAA,还是换成Cbreak,设置容差,选择目标函数为Vmax,然后进行灵敏度分析,分析之后就能优化了。
楼主如果想要具体的Pspice用法图解的话,给个邮箱,我截图发给你。