『壹』 求一个正弦波发生电路,越简单越好
具体的参数取值如图所示,这是一个最简单的正弦波发生电路。
基本文氏电桥反馈型振荡电内路如图容所示,它由放大器即运算放大器与具有频率选择性的反馈网络构成,施加正反馈就产生振荡。运算放大器施加负反馈就为放大电路的工作方式,施加正反馈就为振荡电路的工作方式。图中电路既应用了经由R3和R4的负反馈,也应用了经由串并联RC网络的正反馈。电路的特性行为取决于是正反馈还是负反馈占优势。这个电路有两部分组成,即方框里的放大电路和由R1、R2、C1和C2组成的选频网络。
『贰』 文氏桥正弦波振荡电路的桥是以什么各为一臂组成的
文氏桥振荡电路产生的正弦波幅值取决于非线性稳幅电路的特性,幅度越大增益内越小,当幅度大到容能使增益达到理论增益(3倍)时,就是理论振荡幅度。
但是实际这个幅度——增益的关系式并不那么好计算,就算能够确定它,由于3倍的放大增益也只是个理论值,由于桥路实际元件的误差,实际需要的增益并非是准确的3倍,本人曾经用仿真确认,桥路的一个元件有1%误差,最终幅度误差至少6%甚至达20%(看具体非线性反馈的电路构成),因此就算是计算出幅度依然不靠谱,实际幅度应该采用实测加可调元件来获得。
『叁』 桥式整流电路为什么总是输出正弦波的正半部分
桥式整流电路的工作原理如下:e2为正半周时,对D1、D3加正向电压,Dl、D3导通;对D2、D4加反向电压,D2、D4截止。电路中构成e2、D1、Rfz、D3通电回路,在Rfz上形成上正下负的半波整流电压,e2为负半周时,对D2、D4加正向电压,D2、D4导通;对D1、D3加反向电压,D1、D3截止。电路中构成e2、D2Rfz、D4通电回路,同样在Rfz上形成上正下负的另外半波的整流电压。如此重复下去,结果在Rfz上便得到全波整流电压。其波形图和全波整流波形图是一样的。从图中还不难看出,桥式电路中每只二极管承受的反向电压等于变压器次级电压的最大值,比全波整流电路小一半。
桥式整流是对二极管半波整流的一种改进。半波整流利用二极管单向导通特性,在输入为标准正弦波的情况下,输出获得正弦波的正半部分,负半部分则损失掉。
桥式整流就是把二极管半波整流丢失的负半部分也翻转上来了而已。相当于做了绝对值运算~呵呵~
『肆』 关于一个产生正弦波的电路,请确认下图电路能否输出正弦波
这是典型的文氏桥振荡器电路(属于RC振荡器),用于产生正弦波。
R1C1等效于一节超前型移相电路,R3C2等效于一节滞后型移相电路,频率从低到高连续变化时,相移从 90°到-90°连续变化。显然其中必存在一个中间频率f0,使 RC串并联网络的相移为零。于是满足相位平衡条件。
在幅度方面,负反馈环路使电路的放大倍数为 R2/R4+1=4>3,满足幅度平衡条件。
满足相位和幅度平衡条件,因此会产生自激振荡。振荡频率f0=1/(2π*R1*C1)。
当R2/R4较大时,会产生削顶畸变,可以通过仔细调整R2/R4的比值来得到适当的幅度、减小失真。(本例中R2/R4较大,会有向方波变化的畸变)
晚上做了个仿真。文氏桥起振的极限条件是R2/R4+1=3,或说R2/R4=2。R2/R4越大就越容易起振,但输出波形幅度很快达到上下轨,即上下沿越陡,输出越接近于方波;正负电源电压不平衡时,会在电压窄的一边先削顶,而使另一边被免于削顶。在下图的R2=15K、R4=7K的情况下,电路在1秒左右才起振,但R2/R4>2,最终幅度逐渐增大而被削顶。
从你的补充描述来看,你实际选用的元件参数误差偏大。要注意对所用的每个元件进行测试,确保参数误差在5%之内;电容器的漏电要小,最好用CBB等无极性、损耗小的。
『伍』 要使RC桥式正弦波振荡器(文氏桥振荡器)产生正弦波的条件是什么D1、D2在电路中的作用是什么
产生正弦波的条件抄是Rf>=2R(我看不清楚你的图)就是反馈放大倍数要大于等于3但是为了容易起震一般都会大于3,因此起震后由于正反馈过深,波形会有严重的失真,因此D1D2的作用就是在起震后自动调节反馈深度,从而实现稳幅和减小失真的作用。
RC正弦波振荡器,RC正弦波振荡器的振荡频率反比于RC选频阿络元件RC的乘积。用增大电阻阻值的方法降低振荡频率,不会像LC振荡器中增大电感量那样会使元件体积和重量加大,故RC振荡器可工作在低频段。
当振荡频率延伸至超低频频段时,要求RC乘积非常大。容量很大的电容体积大;阻值过大的电阻,阻值稳定性下降,电阻上的直流电压降过大,造成器件工作点偏离正常值,增大波形失真。积分式RC正弦波振荡器,可以在一定程度上克服此缺点。
这种振荡器的振荡频率,反比于组成振荡器积分器的积分时间常数。要获得大的积分时间常数,不一定要用阻值大的电阻。用低阻值电阻构成一个T型网络,取代高阻值的积分电阻,只要二者的传输电导相等,便可收到相同的积分效果。积分式RC正弦波振荡器特别适用于超低频段。
『陆』 电路与模拟电子技术,文式桥式正弦波振荡电路求解。
1) R1与RF组成电压负反馈,串并联RC 组成电压正反馈
2) 振荡角频率=1/RC=1000000/(10000x0.062)=100/0.062=1613/s
振荡频率=1613/6.283=257Hz
3)起振条件R1/(R1+RF)<1/3
『柒』 RC桥式正弦波振荡电路由两部分电路组成,即RC串并联选频网络和
RC桥式正弦波振荡电路由RC串并联选频网络和同相比例放大器两部分电路组成。
『捌』 正弦波发生电路
一般的思路是这样:
1、首先在前级设计出10kHz—60kHz频率可调的正弦波低频振荡器,一般可以用文氏桥振荡器,它调节简单,波形较好。
2、振荡器的输出接放大器,实际就象音频功放。不过它的频响要达到60KHZ以上(一般功放达不到),你可能并不需要大的功率,所以在末级不需要大功率管,一般小、中功率管,耐压只要够就行。
3、对于末级的电压要高,否则输出不了150V峰峰值,你应该使用大于±150V的电源供电。
4、输出幅度调整,可放在电压放大级,象音量控制一样,用电位器,并在上、下端加接电阻,以控制最下端输出30V,最上下端输出在150V。
大概就这样。
『玖』 rc桥式正弦波振荡电路的特点
Uf与Ui有良好的线性关系,结构简单