导航:首页 > 电器电路 > 灰阶电路

灰阶电路

发布时间:2021-10-20 12:07:58

Ⅰ 什么是负片,什么是灰阶,什么是白平衡谢谢

负片是经曝光和显影加工后得到的影像,其明暗与被摄体相反,其色彩则为被摄体的补色
灰阶
液晶屏幕上人们肉眼所见的一个点,即一个像素,它是由红、绿、蓝(RGB)三个子像素组成的。每一个子像素,其背后的光源都可以显现出不同的亮度级别。而灰阶代表了由最暗到最亮之间不同亮度的层次级别。这中间层级越多,所能够呈现的画面效果也就越细腻。以8bit panel为例,能表现2的8次方,等于256个亮度层次,我们就称之为256灰阶。LCD屏幕上每个像素,均由不同亮度层次的红、绿、蓝组合起来,最终形成不同的色彩点。也就是说,屏幕上每一个点的色彩变化,其实都是由构成这个点的三个RGB子像素的灰阶变化所带来的。
白平衡,字面上的理解是白色的平衡。那什么是白色?这就涉及到一些色彩学的知识,白色是指反射到人眼中的光线由于蓝、绿、红三种色光比例相同且具有一定的亮度所形成的视觉反应。我们都知道白色光是由赤、橙、黄、绿、青、蓝、紫七种色光组成的,而这七种色光又是有红、绿、蓝三原色按不同比例混合形成,当一种光线中的三原色成分比例相同的时候,习惯上人们称之为消色,黑、白、灰、金和银所反射的光都是消色。通俗的理解白色是不含有色彩成份的亮度。人眼所见到的白色或其他颜色同物体本身的固有色、光源的色温、物体的反射或透射特性、人眼的视觉感应等诸多因素有关(请参阅《色彩学原理》),举个简单的例子,当有色光照射到消色物体时,物体反射光颜色与入射光颜色相同,既红光照射下白色物体呈红色,两种以上有色光同时照射到消色物体上时,物体颜色呈加色法效应,如红光和绿光同时照射白色物体,该物体就呈黄色。当有色光照射到有色物体上时,物体的颜色呈减色法效应。如黄色物体在品红光照射下呈现红色,在青色光照射下呈现绿色,在蓝色光照射下呈现灰色或黑色。

在了解白平衡之前还要搞清另一个一个非常重要的概念――色温。所谓色温,简而言之,就是定量地以开尔文温度(K)来表示色彩。英国著名物理学家开尔文认为,假定某一黑体物质,能够将落在其上的所有热量吸收,而没有损失,同时又能够将热量生成的能量全部以“光”的形式释放出来的话,它便会因受到热力的高低而变成不同的颜色。例如,当黑体受到的热力相当于500—550摄氏度时,就会变成暗红色,达到1050-1150摄氏度时,就变成黄色,温度继续升高会呈现蓝色。光源的颜色成分是与该黑体所受的热力温度是相对应的,任何光线的色温是相当于上述黑体散发出同样颜色时所受到的“温度”,这个温度就用来表示某种色光的特性以区别其它,这就是色温。打铁过程中,黑色的铁在炉温中逐渐变成红色,这便是黑体理论的最好例子。色温现象在日常生活中非常普遍,相信人们对它并不陌生。钨丝灯所发出的光由于色温较低表现为黄色调,不同的路灯也会发出不同颜色的光,天然气的火焰是蓝色的,原因是色温较高。万里无云的蓝天的色温约为10000 K,阴天约为7000~9000 K,晴天日光直射下的色温约为6000 K,日出或日落时的色温约为2000 K,烛光的色温约为1000 K。这时我们不难发现一个规律:色温越高,光色越偏蓝;色温越低则偏红。某一种色光比其它色光的色温高时,说明该色光比其它色光偏蓝,反之则偏红;同样,当一种色光比其它色光偏蓝时说明该色光的色温偏高,反之偏低。

由于人眼具有独特的适应性,使我们有的时候不能发现色温的变化。比如在钨丝灯下呆久了,并不会觉得钨丝灯下的白纸偏红,如果突然把日光灯改为钨丝灯照明,就会觉查到白纸的颜色偏红了,但这种感觉也只能够持续一会儿。摄像机的CCD并不能像人眼那样具有适应性,所以如果摄像机的色彩调整同景物照明的色温不一致就会发生偏色。那么什么是白平衡呢?白平衡就是针对不同色温条件下,通过调整摄像机内部的色彩电路使拍摄出来的影像抵消偏色,更接近人眼的视觉习惯。白平衡可以简单地理解为在任意色温条件下,摄像机镜头所拍摄的标准白色经过电路的调整,使之成像后仍然为白色。这是一种经常出现的情况,但不是全部,白平衡其实是通过摄像机内部的电路调整(改变蓝、绿、红三个CCD电平的平衡关系)使反射到镜头里的光线都呈现为消色。如果以偏红的色光来调整白平衡,那么该色光的影像就为消色,而其他色彩的景物就会偏蓝(补色关系)。

Ⅱ LCD 灰阶与驱动电压的关系

TFT 液晶显示器的驱动原理 (一)
我们针对TFT LCD的整体系统面来做介绍, 也就是对其驱动原理来做介绍, 而其驱动原理仍然因为一些架构上差异的关系, 而有所不同. 首先我们来介绍由于Cs(storage capacitor)储存电容架构不同, 所形成不同驱动系统架构的原理.
Cs(storage capacitor)储存电容的架构
一般最常见的储存电容架构有两种, 分别是Cs on gate与Cs on common这两种. 这两种顾名思义就可以知道, 它的主要差别就在于储存电容是利用gate走线或是common走线来完成的. 在上一篇文章中, 我曾提到, 储存电容主要是为了让充好电的电压,能保持到下一次更新画面的时候之用. 所以我们就必须像在CMOS的制程之中, 利用不同层的走线, 来形成平行板电容. 而在TFT LCD的制程之中, 则是利用显示电极与gate走线或是common走线,所形成的平行板电容,来制作出储存电容Cs.(查看图示请点击下载PDF全文)
图1就是这两种储存电容架构, 从图中我们可以很明显的知道, Cs on gate由于不必像Cs on common一样, 需要增加一条额外的common走线, 所以它的开口率(Aperture ratio)会比较大. 而开口率的大小, 是影响面板的亮度与设计的重要因素. 所以现今面板的设计大多使用Cs on gate的方式. 但是由于Cs on gate的方式, 它的储存电容是由下一条的gate走线与显示电极之间形成的.(请见图2的Cs on gate与Cs on common的等效电路) 而gate走线, 顾名思义就是接到每一个TFT的gate端的走线, 主要就是作为gate driver送出信号, 来打开TFT, 好让TFT对显示电极作充放电的动作. 所以当下一条gate走线, 送出电压要打开下一个TFT时 ,便会影响到储存电容上储存电压的大小. 不过由于下一条gate走线打开到关闭的时间很短,(以1024*768分辨率, 60Hz更新频率的面板来说. 一条gate走线打开的时间约为20us, 而显示画面更新的时间约为16ms, 所以相对而言, 影响有限.) 所以当下一条gate走线关闭, 回复到原先的电压, 则Cs储存电容的电压, 也会随之恢复到正常. 这也是为什么, 大多数的储存电容设计都是采用Cs on gate的方式的原因.
至于common走线, 我们在这边也需要顺便介绍一下. 从图2中我们可以发现, 不管您采用怎样的储存电容架构, Clc的两端都是分别接到显示电极与common. 既然液晶是充满在上下两片玻璃之间, 而显示电极与TFT都是位在同一片玻璃上, 则common电极很明显的就是位在另一片玻璃之上. 如此一来, 由液晶所形成的平行板电容Clc, 便是由上下两片玻璃的显示电极与common电极所形成. 而位于Cs储存电容上的common电极, 则是另外利用位于与显示电极同一片玻璃上的走线, 这跟Clc上的common电极是不一样的, 只不过它们最后都是接到相同的电压就是了.
整块面板的电路架构图(查看图示请点击下载PDF全文)
从图3中我们可以看到整片面板的等效电路, 其中每一个TFT与Clc跟Cs所并联的电容, 代表一个显示的点. 而一个基本的显示单元pixel,则需要三个这样显示的点,分别来代表RGB三原色. 以一个1024*768分辨率的TFT LCD来说, 共需要1024*768*3个这样的点组合而成. 整片面板的大致结构就是这样, 然后再藉由如图3中 gate driver所送出的波形, 依序将每一行的TFT打开, 好让整排的source driver同时将一整行的显示点, 充电到各自所需的电压, 显示不同的灰阶. 当这一行充好电时, gate driver便将电压关闭, 然后下一行的gate driver便将电压打开, 再由相同的一排source driver对下一行的显示点进行充放电. 如此依序下去, 当充好了最后一行的显示点, 便又回过来从头从第一行再开始充电. 以一个1024*768 SVGA分辨率的液晶显示器来说, 总共会有768行的gate走线, 而source走线则共需要1024*3=3072条. 以一般的液晶显示器多为60Hz的更新频率来说, 每一个画面的显示时间约为1/60=16.67ms. 由于画面的组成为768行的gate走线, 所以分配给每一条gate走线的开关时间约为16.67ms/768=21.7us. 所以在图3 gate driver送出的波形中, 我们就可以看到, 这些波形为一个接着一个宽度为21.7us的脉波, 依序打开每一行的TFT. 而sourcedriver则在这21.7us的时间内, 经由source走线, 将显示电极充放电到所需的电压, 好显示出相对应的灰阶.
面板的各种极性变换方式
由于液晶分子还有一种特性,就是不能够一直固定在某一个电压不变, 不然时间久了, 你即使将电压取消掉, 液晶分子会因为特性的破坏, 而无法再因应电场的变化来转动, 以形成不同的灰阶. 所以每隔一段时间, 就必须将电压恢复原状, 以避免液晶分子的特性遭到破坏. 但是如果画面一直不动, 也就是说画面一直显示同一个灰阶的时候怎么办? 所以液晶显示器内的显示电压就分成了两种极性, 一个是正极性, 而另一个是负极性. 当显示电极的电压高于common电极电压时, 就称之为正极性. 而当显示电极的电压低于common电极的电压时, 就称之为负极性. 不管是正极性或是负极性, 都会有一组相同亮度的灰阶. 所以当上下两层玻璃的压差绝对值是固定时, 不管是显示电极的电压高, 或是common电极的电压高, 所表现出来的灰阶是一模一样的. 不过这两种情况下, 液晶分子的转向却是完全相反, 也就可以避免掉上述当液晶分子转向一直固定在一个方向时, 所造成的特性破坏. 也就是说, 当显示画面一直不动时, 我们仍然可以藉由正负极性不停的交替, 达到显示画面不动, 同时液晶分子不被破坏掉特性的结果. 所以当您所看到的液晶显示器画面虽然静止不动, 实际上里面的电压是在不停更换的, 而其中的液晶分子正不停的一次往这边跳转

Ⅲ 设置一个按键,功能是切换任务 任务1,8个发光二极管每隔1秒依次点亮

LED点阵显示屏摘要 LED大屏幕显示系统,以AT89S52单片机为核心,由键盘显示、温度采集、串口通信、LED大屏幕显示等功能模块组成。本系统的灰阶控制功能由软件来实现,吸收了硬件软件化的思想,本系统不仅可以实现题目要求的基本功能,同时发挥部分也得到完全的实现,最主要的是LED显示屏的内容可以通过PC机进行实时修改,而且有一定的创新功能。关键字:单片机 LED大屏幕 滚屏显示 PC机控制1.任务设计并制作一台简易LED电子显示屏,16行*16列*16灰阶点阵显示,原理示意图如下:PC机LED灰阶电子显示屏原理框图2.要求
(1)基本要求:设计并制作LED电子显示屏和控制器。1) 自制一台简易16行*16列*16灰阶点阵显示的LED电子显示屏;
2) 自制显示屏控制器,扩展键盘和相应的接口实现多功能显示控制,显示屏显示16灰阶图像(可以是渐变灰阶条纹)、数字和字母亮度适中,应无闪烁。
3) 显示屏通过按键切换显示图像、数字和字母;
4) 显示屏能显示3组特定图像、数字或者英文字母组成的句子,通过按键切换显示内容;
5) 能显示2组特定汉字组成的句子,通过按键切换显示内容。(2)发挥部分:1) 自制一台简易16行*32列*灰阶点阵显示的LED电子显示屏;2) LED显示屏亮度连续可调。3) 实现信息的左右滚屏显示,预存信息的定时循环显示;4) 实现实时时间的显示,显示屏数字显示: 时∶分∶秒(例如 18∶38∶59);5) 增大到10组(每组汉字8个或16个数字和字符)预存信息,信息具有掉电保护;
6)实现和PC机通讯,通过PC机串口直接对显示信息进行更新(须做PC机客户程序);
7)其他发挥功能。3.说明
(1)显示格式和显示信息可以自定义。
(2)电子显示屏LED显示灯只允许使用8*8 LED点阵显示模块。
(3) 显示屏的显示控制方案和控制器的选择方案任选。
(4) 不允许使用LED集成驱动模块和集成灰阶产生模块,可用CPLD或FPGA。2、方案论证2.1 显示部分:显示部分是本次设计最核心的部分,对于LED8*8点阵显示有以下两种方案:方案一:静态显示,将一帧图像中的每一个二极管的状态分别用0 和1 表示,若为0 ,则表示L ED 无电流,即暗状态;若为1 则表示二极管被点亮。若给每一个发光二极管一个驱动电路,一幅画面输入以后,所有L ED 的状态保持到下一幅画。对于静态显示方式方式,所需的译码驱动装置很多,引线多而复杂,成本高,且可靠性也较低。方案二:动态显示,对一幅画面进行分割,对组成画面的各部分分别显示,是动态显示方式。动态显示方式方式,可以避免静态显示的问题。但设计上如果处理不当,易造成亮度低,闪烁问题。因此合理的设计既应保证驱动电路易实现,又要保证图像稳定,无闪烁。动态显示采用多路复用技术的动态扫描显示方式, 复用的程度不是无限增加的, 因为利用动态扫描显示使我们看到一幅稳定画面的实质是利用了人眼的暂留效应和发光二极管发光时间的长短, 发光的亮度等因素. 我们通过实验发现, 当扫描刷新频率(发光二极管的停闪频率) 为50Hz, 发光二极管导通时间≥1m s 时, 显示亮度较好, 无闪烁感.。鉴于上述原因, 我们采用方案二2.2.数字时钟数字时钟是本设计的重要的部分。根据需要,可利用两种方案实现。方案一:本方案完全用软件实现数字时钟。原理为:在单片机内部存储器设三个字节分别存放时钟的时、分、秒信息。利用定时器与软件结合实现1秒定时中断,每产生一次中断,存储器内相应的秒值加1;若秒值达到60,则将其清零,并将相应的分字节值加1;若分值达到60,则清零分字节,并将时字节值加1;若时值达到24,则将时字节清零。该方案具有硬件电路简单的特点,但当单片机不上电,程序将不执行。且由于每次执行程序时,定时器都要重新赋初值,所以该时钟精度不高。方案二:本方案采用Dallas公司的专用时钟芯片DS。该芯片内部采用石英晶体振荡器,其芯片精度不大于10ms/年,且具有完备的时钟闹钟功能,因此,可直接对其以用于显示或设置,使得软件编程相对简单。为保证时钟在电网电压不足或突然掉电等突发情况下仍能正常工作,芯片内部包含锂电池。当电网电压不足或突然掉电时,系统自动转换到内部锂电池供电系统。而且即使系统不上电,程序不执行时,锂电池也能保证芯片的正常运行,以备随时提供正确的时间。基于时钟芯片的上述优点,本设计采用方案二完成数字时钟的功能。2.3 温度采集部分能进行温度测量是本设计的创新部分,由于现在用品追求多样化,多功能化,所以我们决定给系统加上温度测量显示模块,方便人们的生活,使该设计具有人性化。方案一:采用热敏电阻,可满足 40 摄氏度至 90 摄氏度测量范围,但热敏电阻精度、重复性、可靠性较差,对于检测小于 1 摄氏度的信号是不适用的。方案二:采用温度传感器DS18B20。DS18B20可以满足从-55摄氏度到+摄氏度测量范围,且DS18B20测量精度高,增值量为0.5摄氏度,在一秒内把温度转化成数字,测得的温度值的存储在两个八位的RAM中,单片机直接从中读出数据转换成十进制就是温度,使用方便。基于DS18b20的以上优点,我们决定选取DS18b20来测量温度。2.4 显示接口芯片的选择方案一:采取并口输入,占用大量I/O口资源方案二:选取串口输入,使用较少。所以我们选用串口输入。串口输入我们可以选用芯片有74HC、74LS、TPIC6B。但是74HC和74LS两种芯片必须加驱动才能驱动LED,而TI 公司的DMOS 器件TPIC6B , 除具有TTL 和CMOS 器件中移位寄存器 的逻辑功能外, 其最大的特点是驱动功率大, 可直接用作LED的驱动。综合以上比较,我们选取TPIC6B来驱动LED点阵。2.5 串口通讯芯片的选择AT89S52串行口采用的是TTL电平,因此必须的有电平转换电路,可以选择,,MAXA.方案一:采用或芯片实现电平转换,但在使用中发现这两种芯片可靠性不高,且需要正负12V电源,使用麻烦。方案二:采用单电源电平转换芯片MAXA可以使电路变得简单,可靠。基于以上分析,我们选用方案二,选用芯片MAXA2.6 电源模块方案一:采用干电池作为LED点阵系统的电源,由于点阵系统耗电量较大,使用干电池需经常换电池,不符合节约型社会的要求。点阵系统要悬挂在墙上,电池总量大,使用会有较大安全隐患。方案二:采用W/5V直流稳压电源作为系统电源,不仅功率上可以满足系统需要,不需要更换电源,并且比较轻便,使用更加安全可靠基于以上分析,我们决定采用方案二3、总体方案3.1 工作原理:利用单片机AT89S52单片机作为本系统的中控模块。单片机可把由DS18B20、DS读来的数据利用软件来进行处理,从而把数据传输到显示模块,实现温度、日历的显示。点阵LED电子显示屏显示器为主要的显示模块,把单片机传来的数据显示出来,并且可以实现滚动显示。在显示电路中,主要靠按键来实现各种显示要求的选择与切换。3.2 总体设计设计总体框图如图14、系统硬件设计(单元电路设计及分析)4.1 AT89S52单片机最小系统最小系统包括晶体振荡电路、复位开关和电源部分。图2为AT89S52单片机的最小系统。4.2 温度测量模块图3 DS18B20测量电路温度测量传感器采用DALLAS公司DS18B20的单总线数字化温度传感器,测温范围为-55℃~℃,可编程为9位~12位A/D转换精度,测温分辨率达到0.℃,采用寄生电源工作方式, CPU只需一根口线便能与DS18B20通信,占用CPU口线少,可节省大量引线和逻辑电路。接口电路如图3所示。4.3 时钟模块时钟模块采用DS芯片,DS 是DALLAS 公司推出的涓流充电时钟芯片内含有一个实时时钟/日历和31 字节静态RAM 通过简单的串行接口与单片机进行通信实时时钟/日历电路提供秒分时日日期月年的信息每月的天数和闰年的天数可自动调整时钟操作可通过AM/PM 指示决定采用24 或12 小时格式DS 与单片机之间能简单地采用同步串行的方式进行通信仅需用到三个口线1 RES 复位2 I/O 数据线3 SCLK串行时钟时钟/RAM 的读/写数据以一个字节或多达31 个字节的字符组方式通信DS 工作时功耗很低保持数据和时钟信息时功率小于1mW,其接线电路如图4图4 时钟电路4.4 键盘模块键盘、状态显示模块:为了使软件编程简单,本设计利用可编程芯片。接法如表1所示。PA口接按键,PC口则用于控制状态显示所用LED点阵。每个按键都通过一个10K的上拉电阻接电源+Vcc,按键的另一端接地。当有键按下时,与该键相连的PA口的相应位变为低电平,单片机检测到该变化后即转到相应的键处理程序,同时在程序中点亮LED点阵。模块电路如图54.5 LED显示模块点阵数据串行输入, 器件为 移位寄存器TPIC6B, 门控和扫描信号常以16 点阵为一行进行并行处理。在点阵显示中以4×8个L ED 点阵构成一个L ED 显示单元, 采用行共阳列共阴的编排方式。其驱动分为行列两部分, 分别来自于行、列移位寄存器, 行数据是扫描数据, 16 行中每次只有一行被驱动, 采用逐行扫描方式, 列数据则为汉字的点阵码。。对于字符和图形显示也可以用点阵处理, 其显示原理和方法相同.电路如图6图6 LED显示电路4.6灰阶控制4.6.1 阶灰度控制方法对于LED 发光灯, 灰度控制方法主要有驱动电流控制法和驱动脉冲占空比控制法。占空比控制法是在一定的显示重复扫描频率下, LED 器件的亮度可由发光时间Tu 与扫描周期T 的比Tu/T 进行控制。在相同的LED 正向电流作用下, Tu 越长发光能量越大, 只要周期性扫描的速度足够快的话, 人眼发觉不了1 个周期内不发光的部分, 只是感觉LED 的亮度更高。本设计采用占空比控制法。4.6.2 图像扫描方法在图像扫描显示过程中, 每次传输和显示的只是带有8 bit 灰度级的某一列数据的1 bit, 这样传输并显示8次, 就可以反映出8 bit 的灰度级。具体方法为:首先扫描显示16 行各列8 bit 灰度值的D0 比特, 其次扫描显示16行各列的D1比特, 依此类推, 直到显示16 行各列灰度值的D7 bit。各部分按顺序重复上述过程, 直到整屏扫描显示完, 对于16 行各列1 bit 的扫描细节过程为: 从第一行开始, 首先送这一行各列D0 位灰度值数据到各列移位寄存器锁存器, 然后, 送第2 行各列的D0 位数据, 同时显示第1 行数据。依次类推, 直到显示第16 行各列的D0位数据, 同时开始第1 行的D1 位数据。重复8 次扫描显示16 行。每比特扫描时间如下图2所示,整个扫描过程可以如图3所示。方案一、通过FPGA来实现灰阶控制, 是在FPGA 设计工具中利用译码器产生一系列OE 脉宽的具体电路图。E2…E10 来自计数器; H1, H2, H4, H8, H16, H32, H64, H,H 为译码器译出的不同脉宽的OE 信号源。H1为一个时钟周期, H2 为半个时钟周期, 以此类推,H 为1/ 个时钟周期[2]。这一系列脉冲需要进入数据选择器进行分时输出, 最终输出的只有OE一条线。表1 是OE 脉冲分配表。因为H1 最宽, H1 输出时LED 最亮, 所以在这里不是将H1连续输出, 而是分散开, 其目的是提高显示屏的扫描频率, 降低频闪, 使屏幕图像看上去更加稳定。方案二、通过单片机软件扫描来实现LED不同灰阶的现实,从而达到显示图像的效果。由于缺少FPGA的开发工具,所以采用方案二。4.7亮度连续可调控制方案一 通过在软件中调节刷新频率。刷新频率高的时候,连续点亮的时间短,显示屏亮度低,当刷新频率调低时,连续点亮的时间延长,显示屏变亮。因此通过调节占空比来实现显示屏亮度的调整。但是由于软件调节亮度变化不连续.不能实现连续的亮度调节。并且会出现闪烁。调节的效果不明显,故不采用此方案。方案二 通过调节电位器来改变电压,实现亮度的调节。调节电位器实现线形电压调整,从而控制三极管使显示屏压降发生改变。从而达到连续调节亮度的目的。电位器的调节范围较大,因此用此方法来调节。4.8电源选择W/5V的直流稳压电源更加安全,电路图如图7图7 电源电路4.9 PC机通讯4.9.1硬件连接设计MAX是标准的串口通信接口,对于一般的双向通讯,只需要使用串行输入口RXD(第3脚)、串行输出TXD(第2脚)和地线(第7脚)。MAX逻辑电平的规定如表2.图8 串口通讯4.9.2软件设计通过VC++在PC机上编写一个上位机软件实现对单片机的控制,实现LED显示内容和现实方式的控制。4.10整体电路系统整体电路如下:图9 整体电路5、系统软件设计5.1主程序5.2显示子程序流程5.3 显示时间子程序流程5.4 与PC串口通讯程序5.5温度测量流程图
实在不行换一个 或者在硬之城上面找找这个型号的资料

Ⅳ 怀疑空调电路板被换,可以要求厂家鉴定吗

可以的。但是厂家鉴定是需要收费的。如果是普通的让售后服务维修人员来上门鉴定的话,只要是在保修期内找一个随便的理由就可以让售后服务来做鉴定。
电视机的动态:电视机的动态主要表现在电视机屏幕的反应时间,刷新频率以及动态补偿技术决定。目前来说是4k液晶电视面板的灰阶,影响时间大多在20ms以内,而高端液晶电视可以做到10ms以内甚至更低。就目前来说,平板电视机一般都采用pmw调光,大多数电视机采用的都是60赫兹的屏幕,而对于优秀的高端电视机,基本使用120赫兹的屏幕。
动态补偿(MEMC) :液晶电视机的液晶屏幕分子的高延迟特性是动态补偿技术成为解决高动态场景拖影问题的关键,目前主流方案是插黑帧(BFI),也就是在两帧画面之间插入黑帧,经常观看球赛,玩儿ps游戏的同学建议选择搭载MEMC技术的高端电视机。
高动态范围(HDR) :HDR是一类数位图像技术标准的统称,这项技术的关键是针对电光转换函数(EOTF)和电转换函数(OETF)的定义。根据电光转换方案的不同,主流HDR标准分为感知量化编码(PQ)和混合对数伽马(HLG)两大阵营。
其中采用PQ方案的HDR标准包括Dolby Vision(杜比视界)和HDR10等。杜比视界(Dolby Vision)由杜比公司开发,它支持动态元数据和最高12bit的色彩深度,是目前效果最好的HDR解决方案,杜比视界是一套涵盖拍摄,后期制作,编码分发,播放完整而封闭的生态系统。不过由于高昂的专利授权费用以及对硬件要求的较高,目前只有少数高端电视支持使用。采用杜比视界制作的内容也并不丰富,即使电视机本身支持杜比视界,也仅在播放包含杜比视界元数据的内容时才能够开启。
开源的HDR10是目前使用应用最广泛的HDR标准,HDR10不包括动态元数据,仅支持10bit色彩深度,采用杜比视界的电视机通常也支持HDR10,而采用HDR10的电视机并不支持杜比视界。
电视机的类型结构与技术 :目前国内市场上的电视机主要分为led和OLED两大阵营,而Qled电视是指搭载量子点技术的led电视。
液晶板 :液晶显示技术的基本原理是背光经过下偏光片(起偏器)形成单一偏振方向的光束也叫做线性偏振光,而tf驱动两层基板之间,液晶分子发生扭转,改变光束的偏振特性,从而产生不同的灰阶,滤色后经由上偏光也叫检偏器射出形成像素。
根据液晶面板的驱动方式不同,LCD电视采用的液晶面板分别为Ips和vA两种类型。IPS液晶屏幕在可是角度上占优,而VA液晶屏在对比度和背光均匀度上占优,总体来说,同级别的VA液晶屏幕画质要高于IPS液晶屏幕,而且高端的led电视机大多都采用VA液晶屏幕。
背光的区别 :根据光源排布的方式不同,Led电视机的背光类型分为侧入式和直下式。侧入式背光,即edge-lit,为当初分布在液晶面板底部侧面,利用导光板将光束导向屏幕。优点是成本较低,可以做出超薄机身,缺点是背光不均匀问题和边缘漏光现象明显,难以做到超多分区空光,基本上最多只能做16组分区。
直下式背光分为两种,一种是灯珠数量较少五分区的背光模组(back-lit),另外一种是支持分区控光的全阵列式(full-array)背光模组,不过全阵列式背光加超多分区控光是目前最理想的背光类型。
对于液晶电视的购买提示就更新到这里,我是生活电器维保,如果大家有什么不同的看法,欢迎在评论区我们一起讨论共同进步。

Ⅳ 液晶显示屏的灰度控制原理是什么

TFT液晶显示屏的灰抄度是由加袭在液晶上的驱动电压进行控制的,简单描述如下:TFT液晶显示屏的驱动电路通过漏极D对像素施加的电压大小不同,像素和存储电容充入的电荷多少就不同,即建立在像素上的电场强度和时间就不同,从而液晶材料的电光效应也就不同,在液晶显示屏上产生的显示效果就不同,即灰阶的显示效果不同。因此TFT液晶显示屏的灰度控制方法为幅值驱动法,灰度的幅值驱动法的原理如图所示。

幅值驱动法的原理

由图可以看出,灰度控制电路被集成在列驱动器中,在列驱动器的驱动电路和数据锁存器的输出之间加入了电平选择电路。驱动输出的电平不是选择电平和非选电平的二选一,而是多级电平的选择。此时的显示数据也不是一个像素对应一位数据,而是一个像素对应多位数据。

Ⅵ GTG灰阶和纯黑大于纯白的响应速度不一样的

对于LCD(液晶显示器)来说,响应时间这个技术参数一直是大家关注的焦点。从最初的40ms到后来的8ms,数字的不断缩小意味着液晶显示器的性能在不断提高。短短两年时间里,LCD响应时间的提升速度已经让我们始料不及,而灰阶响应时间液晶显示器的推出,更是让我们惊叹!其原因并不是因为它又缩短了几毫秒,而是它以灰阶响应颠覆传统响应时间的计算方式。

GTG是什么?

GTG就是gray to gray缩写,就是从灰阶到灰阶的意思。那么什么又是灰阶呢?只有弄清楚这个概念,才能明白灰阶响应时间的重要性。通常来说,液晶屏幕上人们肉眼所见的一个点,即一个像素,它是由红、绿、蓝(RGB)三个子像素组成的。每一个子像素,其背后的光源都可以显现出不同的亮度级别。而灰阶代表了由最暗到最亮之间不同亮度的层次级别。这中间层级越多,所能够呈现的画面效果也就越细腻。以8bit panel为例,能表现2的8次方,等于256个亮度层次,我们就称之为256灰阶。LCD屏幕上每个像素,均由不同亮度层次的红、绿、蓝组合起来,最终形成不同的色彩点。也就是说,屏幕上每一个点的色彩变化,其实都是由构成这个点的三个RGB子像素的灰阶变化所带来的。

GTG灰阶响应时间更科学

由于液晶分子的转动,LCD屏幕上每个点由前一种色彩过渡到后一种色彩的变化,会有一个时间过程,也就是我们通常所说的响应时间。因为每一个像素点不同灰阶之间的转换过程,是长短不一、非常复杂的,很难用一个客观的尺度来进行表示。因此,业内现有关于液晶响应时间的定义,试图以液晶分子由全黑到全白之间的转换速度作为面板整体响应时间的缩影,来代表液晶面板的快慢程度,通常又可称之为“On/Off”响应时间。由于液晶分子由黑到白和由白到黑的转换速度并不是完全一致的,为了能够尽量有意义的标示出液晶面板的反应速度,现又针对响应时间的定义,基本以“黑→白→黑”全程响应时间为标准。

事实上,液晶分子转换速度及扭转角度由施加电压的大小来决定。从全黑到全白液晶分子面临最大的扭转角度,需施以较大的电压,此时液晶分子扭转速度较快;而介于全黑、全白间的较小幅度灰阶变化,需施加较小电压来进行准确而精细的角度控制,因此液晶分子扭转速度反而要慢一些。通常来讲,液晶面板黑白间的响应时间最快,而其它灰阶之间也是构成绝大多数不同色彩变化的响应时间,要比黑白间的响应时间慢得多。这样看来,传统的On/Off用黑白转换时间来表示LCD响应时间,以偏概全,无法精确地表示LCD面板的整体响应时间。

在传统响应时间计算方式下,液晶显示器虽然可拥有16ms、12ms或8ms的响应时间,然而其灰阶响应速度却可能超过40ms甚至60ms。所以,以黑白黑为响应时间标准无法全面表现LCD真实的反应速度。于是,灰阶响应时间(GTG,gray to gray)概念在被忽视了很长时间之后再一次被提出。希望以灰阶响应时间的概念,全方位体现LCD在彩色切换(即灰阶变化)上的真实速度,并彻底颠覆传统响应时间计算方式,以对响应时间进行更准确的表述,力求符合消费者实际使用上的需求,并为消费者带来更大的价值。因为在日常应用中,无论看电影、游戏或浏览网页,多数屏幕内容不会只是黑白间的转换,而是五颜六色的多彩画面,或深浅不同的层次变化,这些都是灰阶间的转换。一般消费者使用显示器时画面全黑或全白的比例极低,所以尽可能缩短彩色间的转换时间才会更有意义。

GTG灰阶响应时间的实现

要分析影响响应时间的因素,先从响应时间方程式说起。响应时间的方程式如下所示:

γ1:(液晶材料的)粘滞系数
d:(液晶单元盒)间隙
V:(液晶单元盒)驱动电压
Δε:(液晶材料的)介电系数

所以,要缩小响应时间,需要从四个方面进行努力。

1、减小液晶材料的粘滞系数
2、减小液晶单元盒间隙
3、增大增大液晶单元盒驱动电压
4、增大液晶材料的介电系数

这其中液晶材料的粘滞系数和液晶材料的介电系数都是直接与液晶材料本身的特性相关的,研发人员需要经过反复试验,多方面对比测试,才能确定一种稳定而又可以满足低响应时间要求的液晶材料。另一方面,通过提高制造工艺,可以减小液晶单元盒的间隙,使液晶分子可以更快的扭转到位,这同样有助于提高响应时间,而这些也正是以往面板厂家提高响应时间最直接的方法。但由于液晶材料的自身特性,利用这些方法提速的LCD,最快响应时间依然是“黑→白→黑”,灰阶(GTG)响应时间则参差不齐,所以灰阶(GTG)响应时间的整体提升只能通过增大液晶单元盒驱动电压的方法来实现。

然而增大液晶单元盒驱动电压固然也可以提高响应速度,但是同时也会减小液晶的寿命,所以液晶单元盒驱动电压是否可以增加,可以增加多少都是需要建立在严谨的科学试验和反复的实际测试基础之上的。BenQ最尖端的OverDrive液晶驱动加速技术,它以先进集成电路的精准操控,让液晶单元转动更快,大为缩短每个灰阶间的响应时间,且不论影像变化多么复杂,不管灰阶间如何切换,它都可达到平均灰阶4ms或2ms的真正极速,这比传统LCD又有了质的飞跃。

OverDrive液晶驱动加速技术原理就是建立在增大液晶单元盒驱动电压的基础上的,那么它会不会缩短液晶显示器的寿命呢?答案当然是否定的。因为在液晶本身最大的翻转电压处在“黑→白→黑”阶段,而所有灰阶部分的翻转电压全部都小于“黑→白→黑”的部分,OverDrive技术的前提就是只对灰阶部分的翻转电压进行提升,提升的最大值也不会超过“黑→白→黑”部分的最大电压,而对于“黑→白→黑”部分OverDrive并没有进行调整,所以OverDrive的电压调节是完全在安全范围之内的,寿命不会受到任何影响。也就是说大部分灰阶响应时间液晶显示器的“黑→白→黑”响应时间依然是8ms,而使用OverDrive技术的灰阶(GTG)响应时间基本都在4ms以下,这同样也是符合我们日常的使用习惯的,因为我们日常所要现实的图像90%以上都是基于彩色(也就是灰阶)的。

写在最后

灰阶响应时间概念的推出以及巨大的速度提升,让我们彻底告别黑白极速时代,并由此进入了全新的彩色极速时代。从此屏幕上任何色彩变化都更干净清爽,敏锐迅捷。无论专业高端的视频编辑处理,还是眼花缭乱的动作大片,亦或紧张激烈的即时游戏,拥有快速灰阶响应时间的LCD都可提供极致流畅的视觉体验,即便最苛刻的骨灰级发烧友,也会感到无可挑剔。

从传统8ms到灰阶响应时间4ms、3ms、2ms的提升,不只是直观数字上的简单差距。由于传统8ms液晶显示器平均灰阶响应时间接近20ms,因此这一进步足以称得上是具有划时代意义的技术跨越。伴随LCD迅速普及之势,产业升级步伐也将骤然加速,而新技术不断涌现必将使LCD显示器在各应用层面上与传统CRT显示器展开真刀真枪的较量。唯有迅速颠覆传统的革命性技术演变,才能成为推动产业进步的强大助力。

注册BenQ 产品俱乐部会员,就有机会获得LCD、Joybee MP3、DC等奖品;亦可通过短信进行注册、产品防伪验证(编辑CPZC,产品序列号,产品注册码 到:18182222-移动,98982222-联通;资费:注册/验证成功 1元/条)。详情请登录http://www.benq.com.cn/proctclub/查阅。

Ⅶ 显示器中的亮度和灰阶响应时间是什么意思越大越好,还是越小越好

灰阶响应仅限液晶显示器有这个参数。意思就是并非彩色,测试每个色块从无色到有色(灰色)的响应时间。一般而言越小越好,现在液晶显示器一般都可以做到灰阶2MS响应。也就是2毫秒。

亮度是背景灯(一般是LCD或是LED灯)的亮度大小。最大亮度越亮越好。

Ⅷ 设置一个按键,功能是切换任务 任务1,8个发光二极管每隔1s依次点亮,

LED点阵显示屏摘要 LED大屏幕显示系统,以AT89S52单片机为核心,由键盘显示、温度采集、串口通信、LED大屏幕显示等功能模块组成。本系统的灰阶控制功能由软件来实现,吸收了硬件软件化的思想,本系统不仅可以实现题目要求的基本功能,同时发挥部分也得到完全的实现,最主要的是LED显示屏的内容可以通过PC机进行实时修改,而且有一定的创新功能。关键字:单片机 LED大屏幕 滚屏显示 PC机控制1.任务设计并一台简易LED电子显示屏,16行*16列*16灰阶点阵显示,原理示意图如下:PC机LED灰阶电子显示屏原理框图2.要求
(1)基本要求:设计并LED电子显示屏和控制器。1) 一台简易16行*16列*16灰阶点阵显示的LED电子显示屏;
2) 显示屏控制器,扩展键盘和相应的接口实现多功能显示控制,显示屏显示16灰阶图像(可以是渐变灰阶条纹)、数字和字母亮度适中,应无闪烁。
3) 显示屏通过按键切换显示图像、数字和字母;
4) 显示屏能显示3组特定图像、数字或者英文字母组成的句子,通过按键切换显示内容;
5) 能显示2组特定汉字组成的句子,通过按键切换显示内容。(2)发挥部分:1) 一台简易16行*32列*灰阶点阵显示的LED电子显示屏;2) LED显示屏亮度连续可调。3) 实现信息的左右滚屏显示,预存信息的定时循环显示;4) 实现实时时间的显示,显示屏数字显示: 时∶分∶秒(例如 18∶38∶59);5) 增大到10组(每组汉字8个或16个数字和字符)预存信息,信息具有掉电保护;
6)实现和PC机通讯,通过PC机串口直接对显示信息进行更新(须做PC机客户程序);
7)其他发挥功能。3.说明
(1)显示格式和显示信息可以自定义。
(2)电子显示屏LED显示灯只允许使用8*8 LED点阵显示模块。
(3) 显示屏的显示控制方案和控制器的选择方案任选。
(4) 不允许使用LED集成驱动模块和集成灰阶产生模块,可用CPLD或FPGA。2、方案论证2.1 显示部分:显示部分是本次设计最核心的部分,对于LED8*8点阵显示有以下两种方案:方案一:静态显示,将一帧图像中的每一个二极管的状态分别用0 和1 表示,若为0 ,则表示L ED 无电流,即暗状态;若为1 则表示二极管被点亮。若给每一个发光二极管一个驱动电路,一幅画面输入以后,所有L ED 的状态保持到下一幅画。对于静态显示方式方式,所需的译码驱动装置很多,引线多而复杂,成本高,且可靠性也较低。方案二:动态显示,对一幅画面进行分割,对组成画面的各部分分别显示,是动态显示方式。动态显示方式方式,可以避免静态显示的问题。但设计上如果处理不当,易造成亮度低,闪烁问题。因此合理的设计既应保证驱动电路易实现,又要保证图像稳定,无闪烁。动态显示采用多路复用技术的动态扫描显示方式, 复用的程度不是无限增加的, 因为利用动态扫描显示使我们看到一幅稳定画面的实质是利用了人眼的暂留效应和发光二极管发光时间的长短, 发光的亮度等因素. 我们通过实验发现, 当扫描刷新频率(发光二极管的停闪频率) 为50Hz, 发光二极管导通时间≥1m s 时, 显示亮度较好, 无闪烁感.。鉴于上述原因, 我们采用方案二2.2.数字时钟数字时钟是本设计的重要的部分。根据需要,可利用两种方案实现。方案一:本方案完全用软件实现数字时钟。原理为:在单片机内部存储器设三个字节分别存放时钟的时、分、秒信息。利用定时器与软件结合实现1秒定时中断,每产生一次中断,存储器内相应的秒值加1;若秒值达到60,则将其清零,并将相应的分字节值加1;若分值达到60,则清零分字节,并将时字节值加1;若时值达到24,则将时字节清零。该方案具有硬件电路简单的特点,但当单片机不上电,程序将不执行。且由于每次执行程序时,定时器都要重新赋初值,所以该时钟精度不高。方案二:本方案采用Dallas的专用时钟芯片DS。该芯片内部采用石英晶体振荡器,其芯片精度不大于10ms/年,且具有完备的时钟闹钟功能,因此,可直接对其以用于显示或设置,使得软件编程相对简单。为保证时钟在电网电压不足或突然掉电等突况下仍能正常工作,芯片内部包含锂电池。当电网电压不足或突然掉电时,系统自动转换到内部锂电池供电系统。而且即使系统不上电,程序不执行时,锂电池也能保证芯片的正常运行,以备随时提供正确的时间。基于时钟芯片的上述优点,本设计采用方案二完成数字时钟的功能。2.3 温度采集部分能进行温度测量是本设计的创新部分,由于现在用品追求多样化,多功能化,所以我们决定给系统加上温度测量显示模块,方便人们的生活,使该设计具有人性化。方案一:采用热敏电阻,可满足 40 摄氏度至 90 摄氏度测量范围,但热敏电阻精度、重复性、可靠性较差,对于检测小于 1 摄氏度的是不适用的。方案二:采用温度传感器DS18B20。DS18B20可以满足从-55摄氏度到+摄氏度测量范围,且DS18B20测量精度高,增值量为0.5摄氏度,在一秒内把温度转化成数字,测得的温度值的存储在两个八位的RAM中,单片机直接从中读出数据转换成十进制就是温度,使用方便。基于DS18b20的以上优点,我们决定选取DS18b20来测量温度。2.4 显示接口芯片的选择方案一:采取并口输入,占用大量I/O口资源方案二:选取串口输入,使用较少。所以我们选用串口输入。串口输入我们可以选用芯片有74HC、74LS、TPIC6B。但是74HC和74LS两种芯片必须加驱动才能驱动LED,而TI 的DMOS 器件TPIC6B , 除具有TTL 和CMOS 器件中移位寄存器 的逻辑功能外, 其最大的特点是驱动功率大, 可直接用作LED的驱动。综合以上比较,我们选取TPIC6B来驱动LED点阵。2.5 串口通讯芯片的选择AT89S52串行口采用的是TTL电平,因此必须的有电平转换电路,可以选择,,MAXA.方案一:采用或芯片实现电平转换,但在使用中发现这两种芯片可靠性不高,且需要正负12电源,使用麻烦。方案二:采用单电源电平转换芯片MAXA可以使电路变得简单,可靠。基于以上,我们选用方案二,选用芯片MAXA2.6 电源模块方案一:采用干电池作为LED点阵系统的电源,由于点阵系统耗电量较大,使用干电池需经常换电池,不符合节约型社会的要求。点阵系统要悬挂在墙上,电池总量大,使用会有较大安全隐患。方案二:采用W/5直流稳压电源作为系统电源,不仅功率上可以满足系统需要,不需要更换电源,并且比较轻便,使用更加安全可靠基于以上,我们决定采用方案二3、总体方案3.1 工作原理:利用单片机AT89S52单片机作为本系统的中控模块。单片机可把由DS18B20、DS读来的数据利用软件来进行处理,从而把数据传输到显示模块,实现温度、日历的显示。点阵LED电子显示屏显示器为主要的显示模块,把单片机传来的数据显示出来,并且可以实现滚动显示。在显示电路中,主要靠按键来实现各种显示要求的选择与切换。3.2 总体设计设计总体框图如图14、系统硬件设计(单元电路设计及)4.1 AT89S52单片机最小系统最小系统包括晶体振荡电路、复位开关和电源部分。图2为AT89S52单片机的最小系统。4.2 温度测量模块图3 DS18B20测量电路温度测量传感器采用DALLASDS18B20的单总线数字化温度传感器,测温范围为-55℃~℃,可编程为9位~12位A/D转换精度,测温分辨率达到0.℃,采用寄生电源工作方式, CPU只需一根口线便能与DS18B20通信,占用CPU口线少,可节省大量引线和逻辑电路。接口电路如图3所示。4.3 时钟模块时钟模块采用DS芯片,DS 是DALLAS 推出的涓流充电时钟芯片内含有一个实时时钟/日历和31 字节静态RAM 通过简单的串行接口与单片机进行通信实时时钟/日历电路提供秒分时日日期月年的信息每月的天数和闰年的天数可自动调整时钟操作可通过AM/PM 指示决定采用24 或12 小时格式DS 与单片机之间能简单地采用同步串行的方式进行通信仅需用到三个口线1 RES 复位2 I/O 数据线3 SCLK串行时钟时钟/RAM 的读/写数据以一个字节或多达31 个字节的字符组方式通信DS 工作时功耗很低保持数据和时钟信息时功率小于1mW,其接线电路如图4图4 时钟电路4.4 键盘模块键盘、状态显示模块:为了使软件编程简单,本设计利用可编程芯片。接法如表1所示。PA口接按键,PC口则用于控制状态显示所用LED点阵。每个按键都通过一个10K的上拉电阻接电源+cc,按键的另一端接地。当有键按下时,与该键相连的PA口的相应位变为低电平,单片机检测到该变化后即转到相应的键处理程序,同时在程序中点亮LED点阵。模块电路如图54.5 LED显示模块点阵数据串行输入, 器件为 移位寄存器TPIC6B, 门控和扫描常以16 点阵为一行进行并行处理。在点阵显示中以4×8个L ED 点阵构成一个L ED 显示单元, 采用行共阳列共阴的编排方式。其驱动分为行列两部分, 分别来自于行、列移位寄存器, 行数据是扫描数据, 16 行中每次只有一行被驱动, 采用逐行扫描方式, 列数据则为汉字的点阵码。。对于字符和图形显示也可以用点阵处理, 其显示原理和方法相同.电路如图6图6 LED显示电路4.6灰阶控制4.6.1 阶灰度控制方法对于LED 发光灯, 灰度控制方法主要有驱动电流控制法和驱动脉冲占空比控制法。占空比控制法是在一定的显示重复扫描频率下, LED 器件的亮度可由发光时间Tu 与扫描周期T 的比Tu/T 进行控制。在相同的LED 正向电流作用下, Tu 越长发光能量越大, 只要周期性扫描的速度足够快的话, 人眼发觉不了1 个周期内不发光的部分, 只是感觉LED 的亮度更高。本设计采用占空比控制法。4.6.2 图像扫描方法在图像扫描显示过程中, 每次传输和显示的只是带有8 bit 灰度级的某一列数据的1 bit, 这样传输并显示8次, 就可以反映出8 bit 的灰度级。具体方法为:首先扫描显示16 行各列8 bit 灰度值的D0 比特, 其次扫描显示16行各列的D1比特, 依此类推, 直到显示16 行各列灰度值的D7 bit。各部分按顺序重复上述过程, 直到整屏扫描显示完, 对于16 行各列1 bit 的扫描细节过程为: 从第一行开始, 首先送这一行各列D0 位灰度值数据到各列移位寄存器锁存器, 然后, 送第2 行各列的D0 位数据, 同时显示第1 行数据。依次类推, 直到显示第16 行各列的D0位数据, 同时开始第1 行的D1 位数据。重复8 次扫描显示16 行。每比特扫描时间如下图2所示,整个扫描过程可以如图3所示。方案一、通过FPGA来实现灰阶控制, 是在FPGA 设计工具中利用译码器产生一系列OE 脉宽的具体电路图。E2…E10 来自计数器; H1, H2, H4, H8, H16, H32, H, H,H 为译码器译出的不同脉宽的OE 源。H1为一个时钟周期, H2 为半个时钟周期, 以此类推,H 为1/ 个时钟周期[2]。这一系列脉冲需要进入数据选择器进行分时输出, 最终输出的只有OE一条线。表1 是OE 脉冲分配表。因为H1 最宽, H1 输出时LED 最亮, 所以在这里不是将H1连续输出, 而是分散开, 其目的是提高显示屏的扫描频率, 降低频闪, 使屏幕图像看上去更加稳定。方案二、通过单片机软件扫描来实现LED不同灰阶的现实,从而达到显示图像的效果。由于缺少FPGA的工具,所以采用方案二。4.7亮度连续可调控制方案一 通过在软件中调节刷新频率。刷新频率高的时候,连续点亮的时间短,显示屏亮度低,当刷新频率调低时,连续点亮的时间延长,显示屏变亮。因此通过调节占空比来实现显示屏亮度的调整。但是由于软件调节亮度变化不连续.不能实现连续的亮度调节。并且会出现闪烁。调节的效果不明显,故不采用此方案。方案二 通过调节电位器来改变电压,实现亮度的调节。调节电位器实现线形电压调整,从而控制三极管使显示屏压降发生改变。从而达到连续调节亮度的目的。电位器的调节范围较大,因此用此方法来调节。4.8电源选择W/5的直流稳压电源更加安全,电路图如图7图7 电源电路4.9 PC机通讯4.9.1硬件连接设计MAX是标准的串口通信接口,对于一般的双向通讯,只需要使用串行输入口RXD(第3脚)、串行输出TXD(第2脚)和地线(第7脚)。MAX逻辑电平的规定如表2.图8 串口通讯4.9.2软件设计通过C++在PC机上编写一个上位机软件实现对单片机的控制,实现LED显示内容和现实方式的控制。4.10整体电路系统整体电路如下:图9 整体电路5、系统软件设计5.1主程序5.2显示子程序流程5.3 显示时间子程序流程5.4 与PC串口通讯程序5.5温度测量流程图
想了解更加详细的技术参数的话网络搜硬之城去那里了解下,好过自己在这里瞎琢磨专业的地方解决专业的问题,这个都是很现实的。

Ⅸ 前景与背景差分得到的灰度图像,如何将目标识别出来

二值化的阈值你怎么确定的 matlab里面的T=graythresh()确定的阈值是Otsu方法确定的 效果是可以的 车辆旁边的干扰因素可以在二值化后用数字图像的形态学膨胀腐蚀以及开运算和闭运算去掉
如果要算车辆在图像中的面积可以边缘检测之后和形态学处理后的图像联合处理并做掩模运算基本可分割出来车辆的目标以及整个车辆的区域

阅读全文

与灰阶电路相关的资料

热点内容
小钱如何在迷你世界中制造家具 浏览:560
电子城电器维修 浏览:249
现代组合家具 浏览:243
洛阳联合家电维修 浏览:852
南宁朵唯手机维修点 浏览:413
临沂电子电器维修招聘 浏览:116
红木家具锯木是什么意思 浏览:869
广州下水道疏通维修电话 浏览:115
oppor9plus不显示维修视频 浏览:57
广汽厂家电话号码是多少 浏览:537
闲鱼怎么搞到卖家电话 浏览:136
珲春红松家具 浏览:124
机电设备维修是什么职称 浏览:712
格力空调郑州售后维修电话 浏览:179
配有彩页的家具书籍有哪些 浏览:555
秦皇岛哪里有家具卖 浏览:239
华为售后维修点天津静海 浏览:491
华硕笔记本光驱保修多少年 浏览:619
发动机连杆弯曲维修费 浏览:252
西铁城日本买保修多久 浏览:728