1. 三极管跟晶闸管在电路图中的分别用哪种简图来表示,英文名称分别是什么。
.每种元件,各个抄国家表袭示不同,自成体系;
国际通用惯例是:
三极管就是晶体管,用“T”表示,来源于英文“transistor”;
晶闸管就是可控硅,用“SCR”表示来源于英文“silicon controlled rectifier” ;
二极管用“D” 表示,源于英文“diode“;
电阻用“R” 表示,源于英文“resistance“;
电阻用“C” 表示,源于英文“capacitance“等等。
2. 电气原理图中XS,符号是( ),表示什么
电气原理图中的XS在GB 7159-1987《电气技术中的文字符号制订通则》标准中表示插座。
插座的图形符号如图。图取自国标GB/T 4728.3-2005。
(2)晶闸管电路符号扩展阅读:
电气设备常用文字符号新旧对照:
电桥 AB DQ
晶体管放大器 AD DF
集成电路放大器 AJ
印刷电路板 AP
抽屉柜 AT
旋转变压器(测速发电机) TG CF
电容器 C C
发热器件 EH RJ
照明灯 EL ZD
空气调节器 EV
过电压放电器件避雷器 F BL
具有瞬时动作的限流保护器件 FA SX
具有延时动作的限流保护器件 FR YX
具有延时和瞬时动作的限流保护器件 FS YSX
熔断器 FU RD
限压保护器件 FV RD
同步发电机 GS TF
异步发电机 GA YF
蓄电池 GB XC
声响指示器 HA YS
光指示器 HL GS
指示灯 HL SD
瞬时有或无继电器,交流继电器 KA J
接触器 KM C
极化继电器 KP JJ
簧片继电器 KP
延时有或无继电器 KT SJ
电感器 L L
电抗器 L DK
电动机 M D
同步电动机 MS TD
异步电动机 MA YD
电流表 PA I
电压表 PV U
电能表 PJ Wh
断路器 QF DL
电动机保护开关 QM
隔离开关 QS GLK
电阻器 R R
电位器 RP W
控制开关 SA KK
选择开关 XK
按钮开关 SB AK
电流互感器 TA LH
控制变压器 TC KB
电力变压器 TM LB
电压互感器 TV YH
整流器 U ZL
二极管 V D
晶体管 B
晶闸管 KG
电子管 VE G
控制电路用电源的整流器 VC KZ
连接片 XB LP
测试插孔 XJ
插头 XP CT
插座 XS CZ
端子板 XT JX
电磁铁 YA DT
电磁制动器 YB ZD
电磁离合器 YV CLH
电磁吸盘 YH CX
电动阀 YM
电磁阀 YV
3. 晶闸管的内部结构是怎样的画出晶闸管的电路符号。
晶闸管也叫可控硅。直接在网上搜索晶闸管或可控硅应该都有的。你说的是晶闸管里面的实际结构吗?这我们就不懂了,这只有生产可控硅的才知道。
4. 可控硅是什么样的符号啊!
如图所示:
(4)晶闸管电路符号扩展阅读:
不管可控硅的外形如何,管芯都是由P型硅和N型硅组成的四层P1N1P2N2结构。见图1。它有三个PN结(J1、J2、J3),从J1结构的P1层引出阳极A,从N2层引出阴级K,从P2层引出控制极G,所以它是一种四层三端的半导体器件。
除了其中一个电极G仍叫做控制极外,另外两个电极通常却不再叫做阳极和阴极,而统称为主电极Tl和T2。它的符号也和普通可控硅不同,是把两个可控硅反接在一起画成的,
5. 电路图上的符号是SCR1A400V,我知道是双向可控硅,但不知道是什么型号的可控硅请各位工程师指点一下先谢了
就是1A、400V的双向可控硅,符合此参数的都行。比如:3CTS1、BT132、MAC97A6 等
6. 晶闸管的元器件符号咋画啊
它与晶体二极管的符号非常接近,只不过在二极管的负极根部,在画出一个斜的分支线(叫做控制极G),就成了晶闸管的符号了。
7. 可控硅在电路板上的符号
可控硅,是可控硅整流元件的简称,是一种具有三个PN结的四层结构的大功率半导体器件,亦称为晶闸管。
大家使用的是单向晶闸管,也就是人们常说的普通晶闸可控硅管,它是由四层半导体材料组成的,有三个PN结,对外有三个电极:第一层P型半导体引出的电极叫阳极A,第三层P型半导体引出的电极叫控制极G,第四层N型半导体引出的电极叫阴极K。
具有体积小、结构相对简单、功能强等特点,是比较常用的半导体器件之一。该器件被广泛应用于各种电子设备和电子产品中,多用来作可控整流、逆变、变频、调压、无触点开关等。家用电器中的调光灯、调速风扇、空调机、电视机、电冰箱、洗衣机、照相机、组合音响、声光电路、定时控制器、玩具装置、无线电遥控、摄像机及工业控制等都大量使用了可控硅器件。
8. 晶闸管的特殊的晶闸管
从外表上看,双向晶闸管和普通晶闸管很相似,也有三个电极。但是,它除了其中一个电极G仍叫做控制极外,另外两个电极通常却不再叫做阳极和阴极,而统称为主电极Tl和T2。它的符号也和普通晶闸管不同,是把两个晶闸管反接在一起画成的,如图2所示。它的型号,在我国一般用“3CTS”或“KS”表示;国外的资料也有用“TRIAC”来表示的。
从内部结构来看,双向晶闸管是一种N—P—N—P—N型五层结构的半导体器件,见图3(a)。为了便于说明问题,我们不妨把图3(a)看成是由左右两部分组合而成的,如图3(b)。这样一来,原来的双向晶闸管就被分解成两个P—N—P—N型结构的单向晶闸管了。如果把左边从下往上看的p1—N1—P2—N2部分叫做正向的话,那么右边从下往上看的N3—P1—N1—P2部分就成为反向,它们之间正好是一正一反地并联在一起。我们把这种联接叫做反向并联。因此,从电路功能上可以把它等效成图3(c),也就是说,一个双向晶闸管在电路中的作用是和两只普通晶闸管反向并联起来等效的。这也正是双向晶闸管为什么会有双向控制导通特性的根本原因。
双向晶闸管不象普通晶闸管那样,必须在阳极和阴极之间加上正向电压,管子才能导通。对双向晶闸管来说,无所谓阳极和阴极。它的任何一个主电极,对图3(b)中的两个晶闸管管子来讲,对一个管子是阳极,对另一个管子就是阴极,反过来也一样。因此,双向晶闸管无论主电极加上的是正向或是反向电压,它都能被触发导通。不仅如此,双向晶闸管还有一个重要的特点,这就是:不管触发信号的极性如何,也就是不管所加的触发信号电压UG对T1是正向还是反向,双向晶闸管都能被触发导通。双向晶闸管的这个特点是普通晶闸管所没有的。 普通晶闸管不能在较高的频率下工作。因为器件的导通或关断需要一定时间,同时阳极电压上升速度太快时,会使元件误导通;阳极电流上升速度太快时,会烧毁元件。人们在制造工艺和结构上采取了一些改进措施,做出了能适应于高频应用的晶闸管,我们将它称为快速晶闸管。它具有以下几个特点。
一、关断时间(toff)短
导通的晶闸管,当切断正向电流时。并不能马上“关断”,这时如立即加上正向电压,它还会继续导通。从切断正向电流直到控制极恢复控制能力需要的时间,叫做关断时间。用t0仟表示。
晶闸管的关断过程,实际上是储存载流子的消失过程。为了加速这种消失过程,制造快速晶闸管时采用了掺金工艺,把金掺到硅中减少基区少数载流子的寿命。硅中掺金量越多,t0仟越小,但掺金量过多会影响元件的其它性能。
二、导通速度快.能耐较高的电流上升率(dI/dt)
控制极触发导通的晶闸管。总是在靠近控制极的阴极区域首先导通,然后逐渐向外扩展,直到整个面积导通。大面积的晶闸管需要50~100微秒以上才能全面积导通。初始导通面积小时,必须限制初始电流的上升速度,否则将发生局部过热现象,影响元件的性能,甚至烧坏。高频工作时这种现象更为严重。为此,仿造了集成电路的方法,在晶闸管同一硅片上做出一个放大触发信号用的小晶闸管。控制极触发小晶闸管后,小晶闸管的初始导通电流将横向经过硅片流向主晶闸管阴极,触发主晶闸管。从而实际强触发,加速了元件的导通,提高了耐电流上升率的能力。
三、能耐较高的电压上升率(dv/dt)
晶闸管是由三个P—N结组成的。每个结相当于一个电容器。结电压急剧变化时,就有很大的位移电流流过元件,它等效于控制极触发电流的作用。可能使晶闸管误导通。这就是普通晶闸管不能耐高电压上升率的原因。
为了有效防止上述误导通现象发生,快速晶闸管采取了短路发射结结构。把阴极和控制极按一定几何形状短路。这样一来,即使电压上升率较高,晶闸管的电流放大系数仍几乎为零,不致使晶闸管误导通。只是在电压上升率进一步提高,结电容位移电流进一步增大,在短路点上产生电压降足够大时,晶闸管才能导通。
具有短路发射结结构的晶闸管,用控制极电流触发时,控制极电流首先也是从短路点流向阴极。只是当控制极电流足够大,在短路点电阻上的电压降足够大,PN结正偏导通电流时,才同没有短路发射结的元件一样,可被触发导通。因此,快速晶闸管的抗干扰能力较好。
快速晶闸管的生产和应用都进展很快。目前,已有了电流几百安培、耐压1千余伏,关断时间仅为20微妙的大功率快速晶闸管,同时还做出了最高工作频率可达几十千赫兹供高频逆变用的元件。其产品广泛应用于大功率直流开关、大功率中频感应加热电源、超声波电源、激光电源、雷达调制器及直流电动车辆调速等领域。 以往的城市电车和地铁机车为了便于调速采用直流供电,用直流开关动作增加或减小电路电阻,改变电路电流来控制车辆的速度。但它有不能平滑起动和加速。开关体积大、寿命短,而且低速运行时耗电大(减速时消耗在启动电阻上)等缺点。自有了逆导晶闸管,采用了逆导晶闸管控制、调节车速,不仅克服了上述缺点,而且还降低了功耗,提高了机车可靠性。
逆导晶闸管是在普通晶闸管上反向并联一只二极管而成(同做在一个硅片上。它的等效电路和符号如图1所示。它的特点是能反向导通大电流。由于它的阳极和阴极接入反向并联的二极管,可对电感负载关断时产生的大电流、高电压进行快速释放。
目前已经能生产出耐压达到1500~2500V正向电流达400A。吸收电流达150A,关断时间小于30微秒的逆导晶闸管。 (Gate Turn-Off Thyristor)亦称门控晶闸管。其主要特点为,当门极加负向触发信号时晶闸管能自行关断。
前已述及,普通晶闸管(SCR)靠门极正信号触发之后,撤掉信号亦能维持通态。欲使之关断,必须切断电源,使正向电流低于维持电流IH,或施以反向电压强迫关断。这就需要增加换向电路,不仅使设备的体积重量增大,而且会降低效率,产生波形失真和噪声。可关断晶闸管克服了上述缺陷,它既保留了普通晶闸管耐压高、电流大等优点,以具有自关断能力,使用方便,是理想的高压、大电流开关器件。GTO的容量及使用寿命均超过巨型晶体管(GTR),只是工作频率比GTR低。目前,GTO已达到3000A、4500V的容量。大功率可关断晶闸管已广泛用于斩波调速、变频调速、逆变电源等领域,显示出强大的生命力。
可关断晶闸管也属于PNPN四层三端器件,其结构及等效电路和普通晶闸管相同,因此图1仅绘出GTO典型产品的外形及符号。大功率GTO大都制成模块形式。
尽管GTO与SCR的触发导通原理相同,但二者的关断原理及关断方式截然不同。这是由于普通晶闸管在导通之后即处于深度饱和状态,而GTO在导通后只能达到临界饱和,所以GTO门极上加负向触发信号即可关断。GTO的一个重要参数就是关断增益,βoff,它等于阳极最大可关断电流IATM与门极最大负向电流IGM之比,有公式
βoff =IATM/IGM
βoff一般为几倍至几十倍。βoff值愈大,说明门极电流对阳极电流的控制能力愈强。很显然,βoff与昌盛 的hFE参数颇有相似之处。
下面分别介绍利用万用表判定GTO电极、检查GTO的触发能力和关断能力、估测关断增益βoff的方法。
判定GTO的电极
将万用表拨至R×1档,测量任意两脚间的电阻,仅当黑表笔接G极,红表笔接K极时,电阻呈低阻值,对其它情况电阻值均为无穷大。由此可迅速判定G、K极,剩下的就是A极。(此处指的模拟表,电子式万用表红表笔与电池正极相连,模拟表红表笔与电池负极相连) 光控晶闸管(Light Triggered Thyristor——LTT),又称光触发晶闸管。国内也称GK型光开关管,是一种光敏器件。
1.光控晶闸管的结构
通常晶闸管有三个电极:控制极G、阳极A和阴极K。而光控晶闸管由于其控制信号来自光的照射,没有必要再引出控制极,所以只有两个电极(阳极A和阴极K)。但它的结构与普通可控硅一样,是由四层PNPN器件构成。
从外形上看,光控晶闸管亦有受光窗口,还有两条管脚和壳体,酷似光电二极管。
2.光控晶闸管的工作原理
当在光控晶闸管的阳极加上正向电压,阴极加上负向电压时,控晶闸管可以等效成的电路。
可推算出下式:
Ia = Il / [1-(a1+a2)]
式中, Il为光电二极管的光电流;Ia为光控晶闸管阳极电流,即光控晶闸管的输出电流;a1、a2分别为BGl、BG2的电流放大系数。
由上式可知,Ia与Il成正比,即当光电二极管的光电流增大时,光控晶闸管的输出电流也相应增大,同时Il的增大,使BGl、BG2的电流放大系数a1、a2也增大。当al与a2之和接近l时,光控晶闸管的Ia达到最大,即完全导通。能使光控晶闸管导通的最小光照度,称其为导通光照度。光控晶闸管与普通晶闸管一样,一经触发,即成通导状态。只要有足够强度的光源照射一下管子的受光窗口,它就立即成为通导状态,而后即使撤离光源也能维持导通,除非加在阳极和阴极之间的电压为零或反相,才能关闭。
3.光控晶闸管的特性
为了使光控晶闸管能在微弱的光照下触发导通,因此必须使光控晶闸管在极小的控制电流下能可靠地导通。这样光控晶闸管受到了高温和耐压的限制,在目前的条件下,不可能与普通晶闸管一样做成大功率的。
光控晶闸管除了触发信号不同以外,其它特性基本与普通晶闸管是相同的,因此在使用时可按照普通晶闸管选择,只要注意它是光控这个特点就行了。光控晶闸管对光源的波长有一定的要求,即有选择性。波长在0.8——0.9um的红外线及波长在1um左右的激光,都是光控晶闸管较为理想的光源。
9. 请问在电气控制方面的一些符号含义,比如SCR表示晶闸管。等一些相关符号
电气来设自备的文字符号
http://www.dgzj.cn/wjbh/dqfh.htm