A. 均流電路工作原理
Droop法均流開關電源變換技術(圖)
作者:航天科技集團五院五一○所 劉克承 王衛國 郭祖佑 日期:2006-1-1
對Droop法均流變換技術做了理論分析,建立了並聯供電的熱備份開關變換器的電路模型,進行了電路分析並給出了驗證結果
引言
航天用電源系統的發展方向之一是用分布式電源系統代替集中式電源系統,其好處是使供配電系統設計簡化,提高系統的整體可靠性。在分布式供配電系統中應用的DC/DC變換器為了進一步提高自身可靠性,一般採用並聯備份方式,形成可靠性並聯系統。
國內目前星上應用的DC/DC變換器常用的並聯備份方式為冷備份方式(主份承擔全部輸出功率,主份出現故障,需遙控指令進行主備份切換)、溫備份方式(主份承擔全部輸出功率,主份出現故障,備份自動輸出工作)。
國外有資料表明,電子元器件在工作溫度超過50℃時的壽命是常溫25℃時的1/6,或者說電子元器件的失效率隨溫度升高大大增加。為了更進一步提高 DC/DC變換器工作壽命和可靠性,主要影響DC/DC變換器壽命的功率器件要合理設計使用工作應力,在並聯供電系統中實現熱備份方式(主備份同時工作, 各承擔部分輸出功率)。
本文主要通過對Droop法DC/DC變換器並聯均流技術的研究,設計了一種基於反激式電路拓撲的兩個DC/DC變換器並聯輸出的均流變換器。
單端反激電路的電路拓撲及工作原理
• 電路拓撲
圖1 反激式變換器
反激式變換器是在基本Buck-Boost變換器中插入變壓器形成的,線路組成見圖1所示。變壓器原邊繞組其實是充當一個儲能電感的作用,後文將敘述到初級電感量的設計將影響到反激式變換器的工作模式。
電路工作的第一階段是能量存儲階段,此時開關管Tr導通,原邊繞組電流Ip的線性變化遵循式(1)。
(1)
電路工作的第二階段是能量傳送階段,此時開關管Tr關斷,原邊電流為零,副邊整流二極體D導通,出現感生電流。並且按照功率恆定原則,副邊繞組安匝值與原邊安匝值相等。副邊繞組電流Is遵循式(2)。
(2)
其中為副邊繞組電壓,為變壓器副邊的等效電感。
• 電路工作模式
(1)工作模式改變的條件
如圖1所示的變換器,設開關管導通占空比為D1,二極體導通占空比為D2,工作周期為Ts,按穩態電感電流增量相等原則有:
(3)
連續模式時,D1期間(開關管導通,二極體截止)存儲在L上的能量在D2期間(開關管截止,二極體導通)沒有完全放完,故有:
(4)
不連續模式時,D1期間(開關管導通,二極體截止)存儲在L上的能量在小於D2期間(開關管截止,二極體導通)已完全放完,故有:
(5)
從而可以推導臨界連續的條件是:
D1+D2=1且每周期開始時的IP=0
故有:
(6)
其中,Lc為臨界連續的電感值。
代入式(3)有:
(7)
利用狀態空間平均法可以建立CCM模式下的反激變換器的小信號模型,如圖2所示。
圖2 CCM模式下的反激變換器的小信號模型
從中可以導出開環輸出阻抗為:
(8)
其中
由式(8)可以看出,對設計好的Buck-Boost變換器,其輸出阻抗僅為開關管導通比的函數。通過PWM控制開關管的導通占空比D,就可以控制變換器的開環輸出阻抗。
Droop法均流原理
分布式電源系統並聯使用的好處是可以實現電源模塊化和標准化系統設計,可以實現冗餘設計,提高系統的可靠性。但同時要求並聯的電源之間採取均流(Current-sharing)措施,以保證並聯電源模塊之間的電流應力和熱應力均勻分配。
Droop法又叫改變輸出內阻法、斜率控製法、電壓下垂法、外特性下垂法、輸出特性斜率控製法,線路簡單,易於實現;均流精度不高,適用於電壓調整率要求不高的並聯系統。
圖3 開關電源電路模型
圖4 開關電源的輸出曲線
如圖3所示的單個開關電源,它的輸出特性曲線如圖4所示,其輸出電壓Vo與負載電流Io的關系為:
(9)
圖5 兩台開關電源並聯的電路模型
當兩台開關電源按圖5並聯時,每個開關電源的負載電流為:
(10)
(11)
其中
圖6 並聯後開關電源的外特性斜率
從圖6顯見,外特性斜率小(即輸出阻抗小)的電源,分配電流的增長量比外特性斜率大的電源增長量大。
Droop法實現均流的主要手段就是利用電流反饋調節每個變換器的外特性斜率,使並聯變換器的輸出阻抗接近一致,從而達到輸出均流。
由前文所述,反激電路的輸出阻抗為開關管導通占空比的函數,因此用反激電路實現Droop法均流的途徑,應該通過電流檢測信號控制開關管導通占空比來實現,或者說電流檢測信號要參與PWM控制。
本文用Droop法設計了兩個12V輸出的並聯DC/DC變換器,結構如圖7所示,技術指標要求如下。
圖7 Droop法均流DC-DC設計原理框圖
輸入電壓:17V~32VDC;
輸出電壓:12VDC;
輸出最大功率:30W;
工作頻率:200kHz。
電壓調整率:小於±3%;
負載調整率:小於±3%;
效率:大於70%;
紋波:於70mV。
設計結果
● 負載調整率
本文研究的反激式變換器的輸出方式是離線式設計,而且電壓采樣信號沒有從輸出端直接采樣,而是採用了磁隔離采樣技術。這種設計可以不藉助啟動隔離電 路和隔離驅動電路而實現離線式輸出,線路簡單,但帶來的缺點是負載調整率做不到很高。理論上很難把負載調整率做到±5%,有關文獻介紹這種 設計(輸出12V,電流從0.1~0.3A變化)可以實現的負載調整率±3%,本設計經過一些有效的措施,使得負載調整率在負載電流從 0.1~1.3A變化時達到±3%。
1. 變壓器耦合
由於電壓采樣信號是通過變壓器電壓采樣信號繞組耦合輸出電壓變化信號得到的,故信號耦合的好壞直接影響到輸出電壓負載調整率的好壞。經過反復試驗,得到兩點實踐經驗:
1. 變壓器的繞制採用「三明治」式繞法,即初級繞組先繞一半,再繞次級繞組,繞後再將初級繞組剩餘的匝數繞完,將次級繞組包裹在裡面,這樣漏感最小,見圖8所示。
圖8 變壓器的繞制方法
2. 輸出繞組和電壓采樣繞組並繞以實現最佳耦合效果。
2. 工作模式
經過試驗發現,電路工作模式的不同對負載調整率影響也很大。當電路設計原邊電感較大,工作於連續模式(CCM)時,使得負載變化引起的電流信號(峰值電感電流)波形斜率比較平(變化率小),影響輸出電壓負載調整率;而電路工作於不連續模式(DCM)時,又影響效率。
所以經過反復試驗,電路設計原邊電感適中(變壓器初級匝數調整為6匝),電路工作於臨界連續模式,結果對輸出電壓負載調整率有一定改善。
3. 電壓采樣信號
試驗中還發現,減小電壓取樣繞組的輸出阻抗等效於對電壓采樣信號有一定的放大效果,可以一定程度地改善輸出電壓負載調整率,如圖9所示。
圖9 減小電壓取樣繞組的輸出阻抗可改善輸出電壓負載調整率
結論
根據本文的有關研究和討論,以及結合設計中遇到的實際問題的解決,所設計的單端反激熱備份均流開關電源性能比較好,各項輸出參數見表1。
表1
兩個並聯DC-DC變換器的均流結果見圖10。
圖10 兩個並聯DC-DC變換器的均流結果
從結果來看,由於DC/DC1的輸出阻抗小於DC/DC2的輸出阻抗,穩態調整的結果DC/DC1的輸出電流始終大於DC/DC2 的輸出電流,輸出電流的不平衡度為12.78%左右。
可以通過串聯電阻調節DC/DC1的輸出阻抗,能進一步降低不平衡度,但這樣一來輸出效率下降,二來導致輸出負載調整率增大。
從設計結果看,基本實現了熱備份DC/DC輸出,整體效率和各項指標比較好地達到了設計要求。
參考文獻
1. 張占松,蔡宣三著.開關電源的原理與設計. 電子工業出版社.2004.9
2. 周志敏,周紀海著.開關電源實用技術設計與應用. 人民郵電出版社. 2003.8
3. Marty Brown著, 徐德鴻,沈旭,楊成林,周鄧燕譯. 開關電源設計指南. 機械工業出版社.2005.1
4. 北京半導體器件五廠. 最新開關集成穩壓器數據應用手冊
5. 劉樹棠譯.信號與系統(第二版).西安交通大學出版社. 1999.11
6. Gene F.Franklin [美]J.David Powell,Abbas Emami-Naeini著. 動態系統的反饋控制. 朱齊丹,張麗珂,原新等譯. 電子工業出版社.2004.5
B. 三星洗衣機一直顯示dc1是什麼意思
常見程序控制系統故障:接通電源電動機就運轉出現這種故障的原因可能是:電動機驅動電路上的雙向可控硅短路性損壞或晶體管集電極、發射極間擊穿,更換損壞件後故障即可排除。另外,電源電壓波動大也會使洗衣機運轉突然停止或程序突然發生變化。
(2)電路DC1擴展閱讀:洗衣機保養方法:
在放置洗衣機的時候不要將其放置在過於潮濕的地方,這樣容易使洗衣機中的電腦板受潮,盡量將洗衣機放置在陰涼通風處。
在進行洗衣時,最好將衣物中的物品取出,同時將衣服的拉鏈拉上,防止將洗衣槽損壞。
洗衣機在運行時,最好不要讓洗衣機超負荷運轉,時間過長就容易使洗衣機出現異常。
定期檢查洗衣機十分水平放置,如果洗衣機出現傾斜,就容易導致洗衣時出現打桶的現象,洗衣機運行的噪音也會非常大。
洗衣機在使用完畢之後,應該盡量保持桶內的乾燥,同時還能空轉一下,防止黴菌的滋生。
C. 怎樣把DC12V轉變為DC5V和DC1V電壓兩種電壓最好附電路圖,謝謝!
用LM317
http://diagram.weeqoo.com/2008/3/20083121020128813.html
D. 為什麼DC48V經過濾波電路後變成了DC148V
DCDC直流模塊本身就是變壓的模塊呀,DCDC直流模塊的含義是 直流-變直流的,就是變化直流電壓的模塊,原理就是把直流通過 直流-震盪(或電荷泵)-變壓-整流-穩壓
E. 感應水龍頭線圈是用兩節DC1。5V干電池驅動,如我改用AC220轉DC3V需選用多少mA輸出的
盡量選用輸出電流較大的變壓器和整定電路,這樣才保險。根據我的經驗,兩節干電池的電壓最高也就是3V,在這么低的電壓下,控制電路的可靠性和靈敏度都不好調制,所以控制電路所需電壓一般都比較高(例如9-12v)。那麼極有可能電路還含有DC-DC升壓器,那麼所需要的供電負載能力應更大才行。
F. 如何用DC1V電壓升壓到12V。求電路圖接法。
可以用萬用表9V升壓電路(圖網路里有,8550和8050的那個)。輸入為0.6v,輸出為9V,可以適當調整R1 ,R2和電感線圈的多少,或者多加幾個倍壓整流電路,就可以改為1V升到12V的電路了。實驗時我用前一種方法做到了1V升到15V左右,祝你成功
G. 求太陽能路燈電路圖與接線圖
一、路燈控制系統工作原理:白天光伏電池向蓄電池充電,晚上蓄電池提供電力供路燈照明。所以蓄電池將構成一個充放電循環。太陽能路燈照明控制電路包括光伏電池、蓄電池、路燈和控制器四部分。
1、設計中採用AT89S52單片機,並將其作為智能核心模塊。外圍電路主要包括太陽能電池電壓采樣模塊、蓄電池電壓采樣模塊、鍵盤電路模塊、LED顯示模塊、充放電控制模塊等。
2、圖1是太陽能路燈控制器結構設計圖。
12、定壓、穩壓電路
12.1、圖4的最左邊是光敏電阻,為檢測車燈的電路。光敏電阻受光越強,其電阻值越小。在夜晚時,光敏電阻的電阻值變大,單片機HT46R23的PB0所檢測到的電壓值較小;當車燈照射到光敏電阻時,光敏電阻的電阻值就會變小,單片機之PB0檢測到的電壓值就會比較大。
12.2、因此在夜晚,當單片機的PB0所檢測到的電壓值大於某臨界值時,即表示有車輛接近,則單片機將點亮LED燈。
12.3、圖中的人體紅外線感測器的檢測電路是當有人進入檢測范圍時,人體紅外線感測器會發出1個小脈波,因為此小脈波的功率很小,需要經過幾次放大器(LM324)的放大,其信號才能有效地被單片機接收,所以平時無人進人人體紅外線檢測器的檢測范圍時,此電路的輸出為低電位;當單片機的PC0收到高電位時,表示有人進人人體紅外線感測器的檢測范圍,單片機將點亮LED照明燈。
(1)在成品上方的太陽能發電板有受光的情形下,其輸出是否有7.5V以上的太陽能發電板之工作電壓。
(2)如果上述測試正常的話,在未接充電電池的情形下,定電壓電路.HT7544的輸出端應該會有約6V的電壓輸出。流經1個整流二極體後,約為5.4v的電壓,以供充電電池充電之用。
(3)將充電電池接至電路中穩壓電路,HT7551會輸出5V的電壓給單片機使用。
(4)以不透光物質遮蔽太陽能發電板,以模擬人夜的情形。當單片機的PB1所檢測到的太陽能發電板的輸出電壓值小於某一臨界值時,表示天色已暗。此時,單片機會輸出一高電位給控制信號c,以打開電源控制電路,使電池的電能流人LED驅動電路中。同時,單片機會輸出FWM信號以點亮LED燈。6h的時間較長,此時讓LED燈持續點亮1min,以模擬點亮6h,6h後應已過深夜,人車已少,所以熄滅LED燈。
(5)當已過6h而LED燈熄滅後,如果有人車接近,則裝在PB0的光敏電阻或裝在PCO的人體紅外線檢測器應會感應到車燈或人體所發出來的紅外線。此時,單片機會再點亮LED燈約30S,以作警示或照明之用。此情形直到單片機的PB1所檢測到的太陽能發電板所輸出的電壓值大於某1個臨界值時,表示天色已亮,程式再回到開始的狀態。
四、接線說明:
1、 先接蓄電池的連接線
2、 再接蓄電池到控制器的線
3、 再接太陽能板到控制器的線
4、 最後接負載到控制器的線
5、 負載為低壓鈉燈時,在做燈具的時候應該先把整流器的輸出端接光源的兩端的線先連接好(低壓鈉燈光源無正負極可任意連接)。把整流器的輸入端連接兩根足夠長的線(要能區分正負極)。在最後接負載到控制器的接線時注意正負極不能接反。
H. 畫這張電路圖的PCB圖,解釋充電器工作原理。
交流電經過VD1~VD6整流交成直流電,經C1濾波後一路經R1到穩壓管CW1穩壓 經R3給VT2提供基極偏置電壓子同時也經過R4給VT1提供基極偏置電壓,另一路經過R2 R5給VT1 VT2集電極供電 DC1 DC2接入電池後 VT1 VT2形成導通狀態就沖進咯電噠!!CW1是確定沖電器的沖電電壓 LED1 LED2是指示燈 你的這個是電池沖電器的電路圖吧 CW1是2.4V 輸出電壓應該為1.7V左右,就只有1。5V的電池可以用了
I. 「你的實物燈是AC1A,你的實際輸出電壓是DC,保險就該是DC1A」是什麼意思
這句話應該有問題的
正確的是,燈具電源是交流電輸入,經過電子電路作用,改變成直流電輸出,輸出電流不超過1A。
保險管一般是在輸入交流電路里,額定電流1A。標志是AC1A哦。
沒有DC1A這個保險管哦
J. 求太陽能路燈電路圖與接線圖
一、路燈控制系統工作原理:白天光伏電池向蓄電池充電,晚上蓄電池提供電力供路燈照明。所以蓄電池將構成一個充放電循環。太陽能路燈照明控制電路包括光伏電池、蓄電池、路燈和控制器四部分。
1、設計中採用AT89S52單片機,並將其作為智能核心模塊。外圍電路主要包括太陽能電池電壓采樣模塊、蓄電池電壓采樣模塊、鍵盤電路模塊、LED顯示模塊、充放電控制模塊等。
2、圖1是太陽能路燈控制器結構設計圖。
3、太陽能路燈控制器選擇ATMEL公司的8位單片機AT89S52為核心的智能控制模塊,在整體上具有低功耗、性能高的特點。
二、單片機振盪電路
1、單片機振盪電路如圖2所示。
2、太陽能路燈控制電路設計方案匯總(兩款太陽能路燈控制電路原理圖詳解)
三、復位電路
1、復位電路如圖3所示,電路結構簡單,穩定可靠。
2、系統正常工作電壓為5V,系統採用12V/24V的鉛酸蓄電池供電,蓄電池電壓不穩定,所以需要對電源進行穩壓。本系統採用LM7805三端穩壓器,其輸入電壓在5~24V時均可以保證輸出為穩定的+5V。LM7805組成穩壓電源只需要很少的外圍元件,使用起來非常方便,工作穩定可靠J。系統電源電路如圖4所示。
3、太陽能電池采樣和蓄電池采樣對於系統正常運行起著非常重要的作用。
3.1、太陽能路燈控制器要對蓄電池充放電進行合理控制,即需對蓄電池、太陽能電池板電壓進行采樣。為此,AT89S52單片機就要外接A/D轉換模塊,把電壓轉換為數字信號,系統選用v/F轉換晶元LM331組成數模轉換電路J。
3.2、在系統采樣設計中,為了防止因為外部因素導致AT89S52程序跑飛或死機,提高系統穩定性,在LM331與單片機之間還需增加單通道的高速光電隔離器6n137J。圖5為太陽能電池板采樣電路圖。系統蓄電池采樣和太陽能電池板采樣電路相同。
4、照明系統框圖如圖l所示。
5、圖1LED太陽能節能燈照明系統框圖
5.1、單片機經由檢測電路檢測太陽能發電板所發出來的電壓,並由1組A/DCl的轉換值來判斷是否已天黑。
5.2、當光線充足時,將太陽能發電板所發出的電送至定電壓電路,此時,單片機也會由其A/DC1轉換值來監控充電電池的電量,並以綠色、黃色與紅色的LED來表示充電電池的電量。單片機以定電壓的方式來對充電電池充電,只要定電壓電路的最大輸出電壓值依充電電池的規格來設定,就不會發生電池過充而損壞的情形。
5.3、當光線不足(天黑)時,單片機經由A/DC1的轉換值檢測到太陽能發電板發出的電壓已接近於零,此時,單片機會依此A/DC1轉換後數值來判斷是否點亮LED燈,當此A/DC1轉換後的值低於某一臨界值時,該值越小,則單片機會輸出一脈寬越寬的PWM信號,使LED燈的亮度越亮。
5.4、如果僅靠太陽能電池來對充電電池充電,其充電量可能不足以提供LED燈點亮一整晚。所以我們預計入夜後,此太陽能燈約只點亮6h,此時大約已過深夜12點。
5.5、另外,我們再加入光敏電阻與人體紅外線檢測器,當太陽能燈點亮6h而熄滅後,如果光敏電阻檢測到有車輛駛近,或者人體紅外線檢測器偵測到有人靠近時,則LED燈會再點亮數分鍾,以作照明之用。如此,僅靠太陽能電池的充電量應足以供此LED燈使用。
6、定壓、穩壓電路
定壓、穩壓電路如圖2所示
7、設計中,HT7544是1隻4.4V的穩壓塊,把HT7544的GND腳接地,其輸入腳(in)輸入的電壓大於4.4V,其輸出腳(out)會固定輸出4.4V的電壓。因為HT7544的輸出腳(out)電壓~LGND大於4-4V,所以流過電阻Rl的電流為
8、在本設計中,單片機HT46R23需要的5v穩壓電源通過集成穩壓塊HT7551來供給。HT7551的GND腳接地,其輸人腳(in)輸入大於5V的電壓時,輸出腳(out)會固定輸出5V的電壓。兩只10k1)的電阻R3與R4作分壓電路,其分壓後之電壓流人單片機HT46R23的A/DC2轉換接腳(PB2),以供單片機檢測充電電池的電壓。
9、LED驅動電路
LED的驅動電路如圖3所示
10、驅動電路中,PWM信號由單片機HT46R23的PWMO端輸出。
10.1、由圖3可知,太陽能發電板所發出來的電壓通過電阻R5與R6的分壓電路取出。因為,使用的太陽能發電板的工作電壓為7.5v,而單片機A/DCl轉換的類比輸入電壓最大為5v,使用兩只10kQ的電阻R5與R6來作分壓電路,使流入單片機A/DC1轉換(PB1)的電壓為太陽能發電板所輸出電壓的一半。
10.2、當A/DC1轉換後的數字值小於某1個臨界值時,單片機會輸出一數字信號c,該信號打開電源控制電路,使電池的電能流人驅動電路中。同時,輸出PWM的信號以點亮LED燈。A/Dc1轉換後的數字值越小,單片機輸出PWM的脈波寬度越寬。
11、檢測電路
檢測電路如圖4所示。光敏電阻(Cds)與人體紅外線感測器(GDS),分別檢測車輛燈光與人體的紅外線。
12、定壓、穩壓電路
12.1、圖4的最左邊是光敏電阻,為檢測車燈的電路。光敏電阻受光越強,其電阻值越小。在夜晚時,光敏電阻的電阻值變大,單片機HT46R23的PB0所檢測到的電壓值較小;當車燈照射到光敏電阻時,光敏電阻的電阻值就會變小,單片機之PB0檢測到的電壓值就會比較大。
12.2、因此在夜晚,當單片機的PB0所檢測到的電壓值大於某臨界值時,即表示有車輛接近,則單片機將點亮LED燈。
12.3、圖中的人體紅外線感測器的檢測電路是當有人進入檢測范圍時,人體紅外線感測器會發出1個小脈波,因為此小脈波的功率很小,需要經過幾次放大器(LM324)的放大,其信號才能有效地被單片機接收,所以平時無人進人人體紅外線檢測器的檢測范圍時,此電路的輸出為低電位;當單片機的PC0收到高電位時,表示有人進人人體紅外線感測器的檢測范圍,單片機將點亮LED照明燈。
(1)在成品上方的太陽能發電板有受光的情形下,其輸出是否有7.5V以上的太陽能發電板之工作電壓。
(2)如果上述測試正常的話,在未接充電電池的情形下,定電壓電路.HT7544的輸出端應該會有約6V的電壓輸出。流經1個整流二極體後,約為5.4v的電壓,以供充電電池充電之用。
(3)將充電電池接至電路中穩壓電路,HT7551會輸出5V的電壓給單片機使用。
(4)以不透光物質遮蔽太陽能發電板,以模擬人夜的情形。當單片機的PB1所檢測到的太陽能發電板的輸出電壓值小於某一臨界值時,表示天色已暗。此時,單片機會輸出一高電位給控制信號c,以打開電源控制電路,使電池的電能流人LED驅動電路中。同時,單片機會輸出FWM信號以點亮LED燈。6h的時間較長,此時讓LED燈持續點亮1min,以模擬點亮6h,6h後應已過深夜,人車已少,所以熄滅LED燈。
(5)當已過6h而LED燈熄滅後,如果有人車接近,則裝在PB0的光敏電阻或裝在PCO的人體紅外線檢測器應會感應到車燈或人體所發出來的紅外線。此時,單片機會再點亮LED燈約30S,以作警示或照明之用。此情形直到單片機的PB1所檢測到的太陽能發電板所輸出的電壓值大於某1個臨界值時,表示天色已亮,程式再回到開始的狀態。
四、接線說明:
1、 先接蓄電池的連接線
2、 再接蓄電池到控制器的線
3、 再接太陽能板到控制器的線
4、 最後接負載到控制器的線
5、 負載為低壓鈉燈時,在做燈具的時候應該先把整流器的輸出端接光源的兩端的線先連接好(低壓鈉燈光源無正負極可任意連接)。把整流器的輸入端連接兩根足夠長的線(要能區分正負極)。在最後接負載到控制器的接線時注意正負極不能接反。